分析 (1)首先證明AD=BD,再證明∠DAF=∠DBE,可利用ASA定理判定△AFD≌△BED,進(jìn)而得到AF=BE;
(2)方法與(1)類(lèi)似,證明△AFD≌△BED(AAS)可得AF=BE.
解答 證明:(1)∵△ABC是等腰三角形,BD為斜邊上的中線,
∴BD=AD=$\frac{1}{2}$AC,∠ADB=90°,
∴∠1+∠GAD=90°,
∵AG⊥BE于G,
∴∠2+∠DBE=90°,
∵∠1=∠2,![]()
∴∠DAF=∠DBE,
在△AFD和△BED中,
$\left\{\begin{array}{l}{∠ADB=∠BDE}\\{AD=BD}\\{∠DAG=∠DBE}\end{array}\right.$,
∴△AFD≌△BED(ASA),
∴AF=BE;
(2)AF與BE相等;
∵△ABC是等腰三角形,BD為斜邊上的中線,
∴BD=AD=$\frac{1}{2}$AC,∠ADB=90°,
∴∠DBE+∠DEB=90°,
∵AG⊥BE于G,
∴∠GBF+∠F=90°,
∵∠DBE=∠GBF,
∴∠F=∠DEB,
在△AFD和△BED中,
$\left\{\begin{array}{l}{∠DEB=∠F}\\{∠BDF=∠ADF=90°}\\{AD=BD}\end{array}\right.$,
∴△AFD≌△BED(AAS),
∴AF=BE;
點(diǎn)評(píng) 此題主要考查了全等三角形的判定與性質(zhì),以及直角三角形的性質(zhì),關(guān)鍵是掌握直角三角形斜邊上的中線等于斜邊的一半.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com