分析 (1)根據(jù)等腰三角形的性質(zhì)和三角形內(nèi)角和定理可求∠ABC的度數(shù),再根據(jù)直角三角形的性質(zhì)可求∠N的度數(shù);
(2)根據(jù)線段垂直平分線的性質(zhì)可求BD=AD,根據(jù)等腰三角形的判定和性質(zhì)可求BC的長(zhǎng).
解答 解:(1)∵在△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=(180°-36°)÷2=72°,
∵M(jìn)N⊥AB,
∴∠BMN=90°,
∴∠N=90°-72°=18°;
(2)∵AB的垂直平分線MN交BC的延長(zhǎng)線于點(diǎn)N,
∴∠ABD=∠A=36°,BD=AD=6,
∴∠BDC=72°,
∴∠BDC=∠ACB,
∴BC=BD=6.
點(diǎn)評(píng) 本題考查的是等腰三角形的性質(zhì),線段垂直平分線的性質(zhì),熟知垂直平分線上任意一點(diǎn),到線段兩端點(diǎn)的距離相等是解答此題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+\frac{1}{y}=0}\\{y+x=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{6x+4y=9}\\{y=3x+4}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 5 | B. | 7 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com