【題目】張老師在講解復(fù)習(xí)《圓》的內(nèi)容時(shí),用投影儀屏幕展示出如下內(nèi)容:
如圖,
內(nèi)接于
,直徑
的長為2,過點(diǎn)
的切線交
的延長線于點(diǎn)
.
![]()
張老師讓同學(xué)們添加條件后,編制一道題目,并按要求完成下列填空.
(1)在屏幕內(nèi)容中添加條件
,則
的長為______.
(2)以下是小明、小聰?shù)膶?duì)話:
小明:我加的條件是
,就可以求出
的長
小聰:你這樣太簡單了,我加的是
,連結(jié)
,就可以證明
與
全等.
參考上面對(duì)話,在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線、添字母).______.
【答案】3
,求
的長
【解析】
(1)連接OC,如圖,利用切線的性質(zhì)得∠OCD=90°,再根據(jù)含30°的直角三角形三邊的關(guān)系得到OD=2,然后計(jì)算OA+OD即可;
(2)添加∠DCB=30°,求ACAC的長,利用圓周角定理得到∠ACB=90°,再證明∠A=∠DCB=30°,然后根據(jù)含30°的直角三角形三邊的關(guān)系求AC的長.
解:(1)連接OC,如圖,![]()
∵CD為切線,
∴OC⊥CD,
∴∠OCD=90°,
∵∠D=30°,
∴OD=2OC=2,
∴AD=AO+OD=1+2=3;
(2)添加∠DCB=30°,求AC的長,
解:∵AB為直徑,
∴∠ACB=90°,
∵∠ACO+∠OCB=90°,∠OCB+∠DCB=90°,
∴∠ACO=∠DCB,
∵∠ACO=∠A,
∴∠A=∠DCB=30°,
在Rt△ACB中,BC=
AB=1,
∴AC=
=
.
故答案為3;
,求
的長.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知直線y=a與拋物線
交于A、B兩點(diǎn)(A在B的左側(cè)),交y軸于點(diǎn)C
(1)若AB=4,求a的值
(2)若拋物線上存在點(diǎn)D(不與A、B重合),使
,求a的取值范圍
(3)如圖2,直線y=kx+2與拋物線交于點(diǎn)E、F,點(diǎn)P是拋物線上的動(dòng)點(diǎn),延長PE、PF分別交直線y=-2于M、N兩點(diǎn),MN交y軸于Q點(diǎn),求QM·QN的值。
圖1
圖2![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個(gè)矩形兩鄰邊的長,且k=2,求該矩形的對(duì)角線L的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勤儉節(jié)約一直是中華民族的傳統(tǒng)美德,某中學(xué)校團(tuán)委準(zhǔn)備以“勤儉節(jié)約”為主題開展一次演講比賽,為此先對(duì)同學(xué)們每月零花錢的數(shù)額進(jìn)行一些了解,隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個(gè)尚不完整的統(tǒng)計(jì)圖表.
組別 | 分組(單位:元) | 人數(shù) |
A | 0≤x<30 | 4 |
B | 30≤x<60 | a |
C | 60≤x<90 | b |
D | 90≤x<120 | 8 |
E | 120≤x<150 | 2 |
根據(jù)以上圖表,解答下列問題:
(1)填空:這次調(diào)查的同學(xué)共有 人,a+b= ,m= ;
(2)求扇形統(tǒng)計(jì)圖中扇形B的圓心角的度數(shù);
(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)每月零花錢的數(shù)額在60≤x<90范圍的人數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在△ADC中,∠ADC=90°,以DC為直徑作半圓⊙O,交邊AC于點(diǎn)F,點(diǎn)B在CD的延長線上,連接BF,交AD于點(diǎn)E,∠BED=2∠C.
(1)求證:BF是⊙O的切線;
(2)若BF=FC,
,求⊙O的半徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)
的圖象與反比例函數(shù)
的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)連接OB,求△AOB 的面積;
(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某博物館每周都吸引大量中外游客前來參觀,如果游客過多,對(duì)館中的珍貴文物會(huì)產(chǎn)生不利影響,但同時(shí)考慮到文物的修繕和保存費(fèi)用問題,還要保證一定的門票收入,因此,博物館采取了漲浮門票價(jià)格的方法來控制參觀人數(shù),在該方法實(shí)施過程中發(fā)現(xiàn):每周參觀人數(shù)與票價(jià)之間存在著如圖所示的一次函數(shù)關(guān)系.在這種情況下,如果要保證每周
萬元的門票收入,那么每周應(yīng)限定參觀人數(shù)是多少?門票價(jià)格應(yīng)是多少.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年10月23日,港珠澳大橋正式開通,成為橫亙?cè)诹尕暄笊系囊坏漓n麗的風(fēng)景.大橋主體工程隧道的東、西兩端各設(shè)置了一個(gè)海中人工島,來銜接橋梁和海底隧道,西人工島上的A點(diǎn)和東人工島上的B點(diǎn)間的距離約為5.6千米,點(diǎn)C是與西人工島相連的大橋上的一點(diǎn),A,B,C在一條直線上.如圖,一艘觀光船沿與大橋
段垂直的方向航行,到達(dá)P點(diǎn)時(shí)觀測兩個(gè)人工島,分別測得
與觀光船航向
的夾角∠DPA=18°,∠DPB=53°,求此時(shí)觀光船到大橋AC段的距離
的長.
參考數(shù)據(jù):
°
,
°
,
°
,
°
,
°
,
°
.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點(diǎn),將線段BP繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com