【題目】如圖,二次函數(shù)
與
軸交于
、
兩點(diǎn),與
軸交于
頂點(diǎn),已知
,
.
![]()
(1)求此二次函數(shù)的解析式及
點(diǎn)坐標(biāo).
(2)在拋物線上存在一點(diǎn)
使
的面積為10,不存在說明理由,如果存在,請求出
的坐標(biāo).
(3)根據(jù)圖象直接寫出
時(shí),
的取值范圍.
【答案】(1)二次函數(shù)解析式為
,
點(diǎn)坐標(biāo)為
;(2)
,
;(3)
.
【解析】
(1)將已知的兩點(diǎn)坐標(biāo)代入拋物線中,即可求得拋物線的解析式;.(2)設(shè)
,然后利用三角形的面積計(jì)算即可;(3)根據(jù)圖象可得出y的取值范圍..
解:(1)將
,
代入
中,
得:
,
解得
.
所以二次函數(shù)解析式為
.
令
,即
,解得:
,
.
∴
點(diǎn)坐標(biāo)為
.
(2)設(shè)
,
∵
的面積為10,
∴
,
解方程
得
,
,
此時(shí)
點(diǎn)坐標(biāo)為
,
.
方程
沒有實(shí)數(shù)解.
綜上所述,
點(diǎn)坐標(biāo)為
,
.
(3)如圖所示,
當(dāng)
時(shí),
當(dāng)
時(shí),
有最小值,
將
代入
中,得
.
當(dāng)
時(shí),
有最大值.
將
代入
中,得
.
∴
的取值范圍是
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)
的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).
![]()
(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對折,得到四邊形
.是否存在點(diǎn)P,使四邊形
為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形OEFG和正方形ABCD是位似圖形,點(diǎn)F的坐標(biāo)為(1,1),點(diǎn)C的坐標(biāo)為(4,2),則這兩個(gè)正方形位似中心的坐標(biāo)是______
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=1,AD=2,點(diǎn)E是邊AD上的一個(gè)動(dòng)點(diǎn),把△BAE沿BE折疊,點(diǎn)A落在A′處,如果A′恰在矩形的對稱軸上,則AE的長為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
(
,
,
為常數(shù)且
)中的
與
的部分對應(yīng)值如下表:
| -1 | 0 | 1 | 3 |
| -1 | 3 | 5 | 3 |
給出了結(jié)論:
(1)二次函數(shù)
有最大值,最大值為5;(2)
;(3)
時(shí),
的值隨
值的增大而減小;(4)3是方程
的一個(gè)根;(5)當(dāng)
時(shí),
.則其中正確結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以
cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線AC
CB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)△APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的一條邊BC的長為5,另兩邊AB,AC的長分別為關(guān)于x的一元二次方程
的兩個(gè)實(shí)數(shù)根。
(1)求證:無論k為何值,方程總有兩個(gè)不相等的實(shí)數(shù)根;
(2)當(dāng)k=2時(shí),請判斷△ABC的形狀并說明理由;
(3)k為何值時(shí),△ABC是等腰三角形,并求△ABC的周長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)
的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)
的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補(bǔ)充完整:
(1)函數(shù)
的自變量x的取值范圍是 ;
(2)下表是x與y的幾組對應(yīng)值.
| ... |
|
|
|
|
|
|
| 1 | 2 | 3 | ... |
| ... |
|
|
|
|
|
|
|
| m | ... |
求m的值;
(3)如圖,在平面直角坐標(biāo)系中,已描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
![]()
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是(1,
).結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(寫兩條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在五邊形ABCDE中,AB=AE,∠B=∠BAE=∠AED=90°,∠CAD=45°,試猜想BC,CD,DE之間的數(shù)量關(guān)系.小明經(jīng)過仔細(xì)思考,得到如下解題思路:
將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED=90°,得∠DEF=180°,即點(diǎn)D,E,F三點(diǎn)共線,易證△ACD≌ ,故BC,CD,DE之間的數(shù)量關(guān)系是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠ABC+∠D=180°,點(diǎn)E,F分別在邊CB,DC的延長線上,∠EAF=
∠BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.
(3)如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=2,CE=3,則DE的長為 .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com