觀察計(jì)算:
當(dāng)
,
時(shí),
與
的大小關(guān)系是_________________.
當(dāng)
,
時(shí),
與
的大小關(guān)系是_________________.
探究證明:
如圖所示,
為圓O的內(nèi)接三角形,
為直徑,過(guò)C作
于D,設(shè)
,BD=b.![]()
(1)分別用
表示線(xiàn)段OC,CD;
(2)探求OC與CD表達(dá)式之間存在的關(guān)系(用含a,b的式子表示).
歸納結(jié)論:
根據(jù)上面的觀察計(jì)算、探究證明,你能得出
與
的大小關(guān)系是:______________.
實(shí)踐應(yīng)用:
要制作面積為4平方米的長(zhǎng)方形鏡框,直接利用探究得出的結(jié)論,求出鏡框周長(zhǎng)的最小值.
觀察計(jì)算:當(dāng)
,
時(shí),
>
;當(dāng)
,
時(shí),
=
.
探究證明:(1)OC=
,
;
(2)當(dāng)a=b時(shí),OC=CD,
=
;a≠b時(shí),OC>CD,
>
.
結(jié)論歸納:![]()
![]()
.
實(shí)踐應(yīng)用:周長(zhǎng)最小為4米.
解析試題分析:觀察計(jì)算:把
,
和
,
分別代入
與
計(jì)算,即可作出判斷;
探究證明:(1)由于OC是直徑AB的一半,則OC易得.通過(guò)證明△ACD∽△CBD,可求CD;
(2)分a=b,a≠b討論可得出
與
的大小關(guān)系;
實(shí)踐應(yīng)用:通過(guò)前面的結(jié)論長(zhǎng)方形為正方形時(shí),周長(zhǎng)最。
試題解析:觀察計(jì)算:當(dāng)
,
時(shí),
>![]()
當(dāng)
,
時(shí),
=
.
探究證明:
(1)∵AB=AD+BD=2OC,
∴OC=![]()
∵AB為⊙O直徑,
∴∠ACB=90°.
∵∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD.
∴△ACD∽△CBD.
∴
.即CD2=AD•BD=ab,解得
;
(2)當(dāng)a=b時(shí),OC=CD,
=
;
a≠b時(shí),OC>CD,
>
.
結(jié)論歸納:![]()
![]()
.
實(shí)踐應(yīng)用
設(shè)長(zhǎng)方形一邊長(zhǎng)為x米,則另一邊長(zhǎng)為
米,設(shè)鏡框周長(zhǎng)為l米,
則
,當(dāng)
,即x=1(米)時(shí),鏡框周長(zhǎng)最。
此時(shí)四邊形為正方形時(shí),周長(zhǎng)最小為4米.
考點(diǎn):1.幾何不等式;2.相似三角形的判定與性質(zhì);3.圓周角定理
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,如圖,在平行四邊形ABCD中,E、F分別是邊BC、CD上的點(diǎn),且EF∥BD,AE、AF分別交BD于點(diǎn)G和點(diǎn)H,BD=12,EF=8。求:(1)
的值。(2)線(xiàn)段GH的長(zhǎng)。![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
小明對(duì)直角三角形很感興趣. △ABC中,∠ACB=90°,D是AB上任意一點(diǎn),連接DC,作DE⊥DC,EA⊥AC,DE與AE交于點(diǎn)E.請(qǐng)你跟著他一起解決下列問(wèn)題:![]()
(1)如圖1,若△ABC是等腰直角三角形,則DE,DC有什么數(shù)量關(guān)系?請(qǐng)給出證明.
(2)如果換一個(gè)直角三角形,如圖2,∠CBA=30°,則DE,DC又有什么數(shù)量關(guān)系?請(qǐng)給出證明.
(3)由(1)、(2)這兩種特殊情況,小明提出問(wèn)題:如果直角三角形ABC中,BC=mAC,那DE, DC有什么數(shù)量關(guān)系?請(qǐng)給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知在矩形ABCD中,AB=2,BC=3,P是線(xiàn)段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連結(jié)PC,過(guò)點(diǎn)P作PE⊥PC交AB于E.![]()
(1)證明△PAE∽△CDP;
(2)當(dāng)點(diǎn)P在AD上運(yùn)動(dòng)時(shí),對(duì)應(yīng)的點(diǎn)E也隨之在AB上運(yùn)動(dòng),設(shè)AP=x,BE=y(tǒng),求y與x的函數(shù)關(guān)系式及y的取值范圍;
(3)在線(xiàn)段AD上是否存在不同于P的點(diǎn)Q,使得QC⊥QE?若存在,求線(xiàn)段AP與AQ之間的數(shù)量關(guān)系;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:四邊形ABCD和四邊形AEFC都是矩形,點(diǎn)B在EF邊上.![]()
(1)請(qǐng)你找出圖中一對(duì)相似三角形(相似比不等于1),并加以證明;
(2)若四邊形ABCD的面積為20,求四邊形AEFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在正方形網(wǎng)格上有△ABC和△DEF.![]()
(1)求證:△ABC∽△DEF;
(2)計(jì)算這兩個(gè)三角形的周長(zhǎng)比;
(3)根據(jù)上面的計(jì)算結(jié)果,你有何猜想?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在梯形ABCD中,AD∥BC,AD=2,BC=4,點(diǎn)M是AD的中點(diǎn),△MBC是等邊三角形.![]()
(1)求證:梯形ABCD是等腰梯形;
(2)動(dòng)點(diǎn)P、Q分別在線(xiàn)段BC和MC上運(yùn)動(dòng),且∠MPQ=60°保持不變.設(shè)PC=x,MQ=y,求y與x的函數(shù)關(guān)系式;
(3)在(2)中:
①當(dāng)動(dòng)點(diǎn)P、Q運(yùn)動(dòng)到何處時(shí),以點(diǎn)P、M和點(diǎn)A、B、C、D中的兩個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?并指出符合條件的平行四邊形的個(gè)數(shù);
②當(dāng)y取最小值時(shí),判斷△PQC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在△ABC中,∠ABC=90°,AB=3,BC=4.點(diǎn)Q是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Q作AC的垂線(xiàn)交線(xiàn)段AB(如圖1)或線(xiàn)段AB的延長(zhǎng)線(xiàn)(如圖2)于點(diǎn)P.![]()
(1)當(dāng)點(diǎn)P在線(xiàn)段AB上時(shí),求證:△APQ∽△ABC;
(2)當(dāng)△PQB為等腰三角形時(shí),求AP的長(zhǎng).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com