欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知:在⊙O的內(nèi)接三角形ABC中,AB=AC,D是⊙O上一點,AD的延長線交BC的延長線于點P.

(1)求證:AB2=AD·AP;

(2)⊙O的直徑為25,AB=20,求BC的長.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

15、如圖,四邊形ABCD為圓內(nèi)接四邊形,對角線AC、BD相交于點O,在不添加輔助線的情況下,請寫出由已知條件可得出的三個不同的正確結論:
(1)
∠BAC=∠BDC
,(2)
∠BAC+∠BCD=180°
,(3)
△BAD∽△CDA
(注:其中關于角的結論不得多于兩個).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形.如圖,矩形ABCD中,已知:AB=a,BC=b(a<b),(1)、(2)、(3)是三種不同內(nèi)接菱形的方式.
①圖(1)中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
②圖(2)中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
③圖(3)中,若EF垂直平分對角線AC,交BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
(1)請你從①,②,③三個命題中選擇一個進行證明;
(2)在圖(1)、(2)、(3)中,證明圖(3)中菱形AECF是這三個不同的矩形ABCD的內(nèi)接菱形面積最大的;
(3)比較(1)、(2)中矩形ABCD的內(nèi)接菱形ABGH與EFGH的面積大;
(4)在矩形ABCD中,你還能畫出第4種矩形內(nèi)接菱形嗎?若能,請在(4)中畫出;若不能,則說明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•高安市二模)如圖,在下列矩形ABCD中,已知:AB=a,BC=b(a<b),假定頂點在矩形邊上的菱形叫做矩形的內(nèi)接菱形,現(xiàn)給出(Ⅰ)、(Ⅱ)、(Ⅲ)三個命題:
命題(Ⅰ):圖①中,若AH=BG=AB,則四邊形ABGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅱ):圖②中,若點E、F、G和H分別是AB、BC、CD和DE的中點,則四邊形EFGH是矩形ABCD的內(nèi)接菱形;
命題(Ⅲ):圖③中,若EF垂直平分對角線AC,變BC于點E,交AD于點F,交AC于點O,則四邊形AECF是矩形ABCD的內(nèi)接菱形.
請解決下列問題:
(1)命題(Ⅰ)、(Ⅱ)、(Ⅲ)都是真命題嗎?請你在其中選擇一個,并證明它是真命題或假命題;
(2)畫出一個新的矩形內(nèi)接菱形(即與你在(1)中所確認的,但不全等的內(nèi)接菱形).
(3)試探究比較圖①,②,③中的四邊形ABGH、EFGH、AECF的面積大小關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最。繛槭裁?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:2011-2012學年江蘇鹽城鹽都區(qū)九年級下學期期中質(zhì)量檢測數(shù)學試卷(解析版). 題型:解答題

問題提出

我們在分析解決某些數(shù)學問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類比應用

1.已知:多項式M =2a2-a+1 ,N =a2-2a .試比較M與N的大小.

2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊

滿足a <b < c ,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂

點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上。                     

      ①這樣的長方形可以畫        個;

②所畫的長方形中哪個周長最。繛槭裁?

拓展延伸                                                                                                                               

     已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

 

 

查看答案和解析>>

同步練習冊答案