【題目】計算下列各題
(1)計算:
+(1﹣
)0﹣4cos45°.
(2)解方程組:
.
【答案】
(1)解:原式=
+1﹣4×
,
=2
+1﹣2
,
=1.
(2)解:方程①×2+②得:3x=9,
方程兩邊同時除以3得:x=3,
將x=3代入①中得:3﹣y=2,
移項得:y=1.
∴方程組的解為 ![]()
【解析】(1)由a0=1以及特殊角的三角函數(shù)值,可得出(1﹣
)0=1,cos45°=
,將其代入算式中即可得出結(jié)論;(2)根據(jù)用加減法解二元一次方程組的步驟解方程組即可得出結(jié)論.
【考點精析】根據(jù)題目的已知條件,利用零指數(shù)冪法則和解二元一次方程組的相關(guān)知識可以得到問題的答案,需要掌握零次冪和負整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));二元一次方程組:①代入消元法;②加減消元法.
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=2x﹣4的圖象與x軸、y軸分別相交于點A、B,點P在該函數(shù)的圖象上,P到x軸、y軸的距離分別為d1、d2 . ![]()
(1)當P為線段AB的中點時,求d1+d2的值。
(2)直接寫出d1+d2的范圍,并求當d1+d2=3時點P的坐標。
(3)若在線段AB上存在無數(shù)個P點,使d1+ad2=4(a為常數(shù)),求a的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校在基地參加社會實踐話動中,帶隊老師考問學生:基地計劃新建一個矩形的生物園地,一邊靠舊墻(墻足夠長),另外三邊用總長69米的不銹鋼柵欄圍成,與墻平行的一邊留一個寬為3米的出入口,如圖所示,如何設(shè)計才能使園地的面積最大?下面是兩位學生爭議的情境: ![]()
請根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長;
(2)請你判斷誰的說法正確,為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關(guān)系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關(guān)系式;
(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在
中,以
為直徑的⊙O,交
于點
,且
,交線段
的延長線于點
,連接
,過點
作
于點
.![]()
(Ⅰ)求證:
;
(Ⅱ)在
的內(nèi)部作
,使
,
分別交于
、
于點
、
,交⊙O于點
,若
,求
的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,拋物線l1:y=ax2﹣4ax+5+4a(a<0)的頂點為A,直線l2:y=kx+3過點A,直線l2與拋物線l1及y軸分別交于B,C.![]()
(1)求k的值;
(2)若B為AC的中點,求a的值;
(3)在(2)的條件下,直接寫出不等式ax2﹣4ax+5+4a<kx+3的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在三角形紙片ABC中,∠A=90°,∠C=30°,AC=30cm,將該紙片沿過點B的直線折疊,使點A落在斜邊BC上的一點E處,折痕記為BD(如圖1),減去△CDE后得到雙層△BDE(如圖2),再沿著過△BDE某頂點的直線將雙層三角形剪開,使得展開后的平面圖形中有一個是平行四邊形,則所得平行四邊形的周長為cm. ![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com