【題目】已知函數(shù)f(x)=Acos2(x+φ)+1(A>0,>0,0<φ<
)的最大值為3,f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對稱軸間的距離為2,則f(1)+f(2)+f(3)+…+f(2016)的值為( )
A.2468
B.3501
C.4032
D.5739
【答案】C
【解析】解:∵函數(shù)f(x)=Acos2(ωx+φ)+1=A
+1 =
cos(2ωx+2φ)+1+
(A>0,ω>0,0<φ<
)的最大值為3,
∴
+1+
=3,可求:A=2.
∵函數(shù)圖象相鄰兩條對稱軸間的距離為2,可得函數(shù)的最小正周期為4,即:
=4,
∴解得:ω=
.
又∵f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),可得:cos(2φ)+1+1=2,
∴cos2φ=0,2φ=
,解得:φ=
.
∴函數(shù)的解析式為:f(x)=cos(
x+
)+2=﹣sin
x+2,
∴f(1)+f(2)+…+f(2016)=﹣(sin
+sin
+sin
+…+sin
)+2×2016
=504×0+4032=4032.
故選:C.
由條件利用二倍角的余弦公式可得f(x)=
cos(2ωx+2φ)+1+
,由函數(shù)的最值求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,可得函數(shù)的解析式,再利用函數(shù)的周期性求得所求式子的值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(1)若不等式f(x)≤6的解集為{x|﹣2≤x≤3},求實(shí)數(shù)a的值;
(2)在(1)的條件下,若存在實(shí)數(shù)n使f(n)≤m﹣f(﹣n)成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=axln(x+1)+x+1(x>﹣1,a∈R).
(1)若
,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)x≥0時,不等式f(x)≤ex恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x﹣1|. (Ⅰ)解不等式:f(x)+f(x﹣1)≤2,;
(Ⅱ)若a>0,求證:f(ax)﹣af(x)≤f(a).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C1:
+
=1(a>b>0),長軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是
. ![]()
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時直線l的方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市儲運(yùn)部緊急調(diào)撥一批物資,調(diào)進(jìn)物資共用4h,調(diào)進(jìn)物資2h后開始調(diào)出物資(調(diào)進(jìn)物資與調(diào)出物資的速度探持不變).儲運(yùn)部庫存物資
(t)與時間
(h)之間的函數(shù)關(guān)系如圖所示,這批物資從開始調(diào)進(jìn)到全部調(diào)出需要的時間是( )
![]()
A. 4 h B. 4.4 h C. 4.8 h D. 5 h
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
兩地之間的路程為2 380 m,甲、乙兩人分別從
兩地出發(fā),相向而行.已知甲先出發(fā)5 min后,乙才出發(fā),他們兩人在
之間的
地相遇,相遇后,甲立即返回
地,乙繼續(xù)向
地前行.甲到達(dá)
地時停止行走,乙到達(dá)
地時也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程
(m)與甲出發(fā)的時間
(min)之間的關(guān)系如圖所示,則乙到達(dá)
地時,甲與
地相距的路程是
________m.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直角坐標(biāo)系中有一矩形OABC , 其中 O是坐標(biāo)原點(diǎn),點(diǎn)A , C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(3,4),直線
交AB于點(diǎn)D , 點(diǎn)P是直線
位于第一象限上的一點(diǎn),連接PA , 以PA為半徑作⊙P , ![]()
(1)連接AC , 當(dāng)點(diǎn)P落在AC上時, 求PA的長;
(2)當(dāng)⊙P經(jīng)過點(diǎn)O時,求證:△PAD是等腰三角形;
(3)設(shè)點(diǎn)P的橫坐標(biāo)為m ,
在點(diǎn)P移動的過程中,當(dāng)⊙P與矩形OABC某一邊的交點(diǎn)恰為該邊的中點(diǎn)時,求所有滿足要求的m值;![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)數(shù)tan45°,
,0,﹣
π,
,﹣
,sin60°,0.3131131113…(相鄰兩個3之間依次多一個1),其中無理數(shù)的個數(shù)是( 。
A.4
B.2
C.1
D.3
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com