分析 過C作CN⊥AB于N,交AD于M,連接BM,根據(jù)兩點之間線段最短和垂線段最短得出此時BM+MN最小,由于C和B關(guān)于AD對稱,則BM+MN=CN,根據(jù)勾股定理求出CN,即可求出答案.
解答
解:過C作CN⊥AB于N,交AD于M,連接BM,則BM+MN最。ǜ鶕(jù)兩點之間線段最短;點到直線垂直距離最短),由于C和B關(guān)于AD對稱,則BM+MN=CN,
∵等邊△ABC中,AD平分∠CAB,
∴AD⊥BC,
∴AD是BC的垂直平分線(三線合一),
∴C和B關(guān)于直線AD對稱,
∴CM=BM,
即BM+MN=CM+MN=CN,
∵CN⊥AB,
∴∠CNB=90°,CN是∠ACB的平分線,AN=BN(三線合一),
∵∠ACB=60°,
∴∠BCN=30°,
∵AB=4,
∴BN=$\frac{1}{2}$AB=2,
在△BCN中,由勾股定理得:CN=$\sqrt{B{C}^{2}-B{N}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,即BM+MN的最小值是2$\sqrt{3}$.
故答案為:2$\sqrt{3}$.
點評 本題考查的是軸對稱-最短路線問題,涉及到等邊三角形的性質(zhì),勾股定理,軸對稱的性質(zhì),等腰三角形的性質(zhì)等知識點的綜合運用.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| x | 3 | 4 | 5 |
| ax2+bx+c | 0.5 | -0.5 | -1 |
| A. | x<3 | B. | x<2 | C. | 4<x<5 | D. | 3<x<4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com