分析 (1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進而得到EF=FG,即可得EF=BE+DF;
(2)∠B+∠D=180°時,EF=BE+DF,與(1)的證法類同;
(3)根據(jù)△AEC繞點A順時針旋轉90°得到△ABE′,根據(jù)旋轉的性質,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據(jù)Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2.
解答 解:(1)∵AB=AD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合.
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC=∠B=90°,
∴∠FDG=180°,點F、D、G共線,
在△AFE和△AFG中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠GAF}\\{AF=AF}\end{array}\right.$,
∴△AFE≌△AFG(SAS),
∴EF=FG,![]()
即:EF=BE+DF,
故答案為:SAS;△AFG;
(2)∠B+∠D=180°時,EF=BE+DF;
∵AB=AD,
∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,
∴∠BAE=∠DAG,
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180°,
∴∠FDG=180°,點F、D、G共線,
在△AFE和△AFG中,
$\left\{\begin{array}{l}{AE=AG}\\{∠EAF=∠GAF}\\{AF=AF}\end{array}\right.$,![]()
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF;
(3)猜想:DE2=BD2+EC2,
證明:連接DE′,根據(jù)△AEC繞點A順時針旋轉90°得到△ABE′,
∴△AEC≌△ABE′,
∴BE′=EC,AE′=AE,
∠C=∠ABE′,∠EAC=∠E′AB,
在Rt△ABC中,
∵AB=AC,
∴∠ABC=∠ACB=45°,
∴∠ABC+∠ABE′=90°,
即∠E′BD=90°,
∴E′B2+BD2=E′D2,
又∵∠DAE=45°,
∴∠BAD+∠EAC=45°,
∴∠E′AB+∠BAD=45°,
即∠E′AD=45°,
在△AE′D和△AED中,
$\left\{\begin{array}{l}{AE′=AE}\\{∠E′AD=∠EAD}\\{AD=AD}\end{array}\right.$,
∴△AE′D≌△AED(SAS),
∴DE=DE′,
∴DE2=BD2+EC2.
點評 本題考查的是全等三角形的判定和性質、旋轉變換的性質以及勾股定理及其逆定理的應用,掌握全等三角形的判定定理和性質定理、靈活運用勾股定理的逆定理判斷直角三角形是解題的關鍵.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 92°、16° | B. | 44°、44° | ||
| C. | 92°、16°或44°、44° | D. | 46°、46° |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com