【題目】(1)一個(gè)凸多邊形除一個(gè)內(nèi)角外,其余各角之和為2750°,這個(gè)多邊形的邊數(shù)為__________,除去的這個(gè)內(nèi)角的度數(shù)為__________.
(2)一個(gè)多邊形截去一個(gè)角后,形成另一個(gè)多邊形的內(nèi)角和是1620°,則原來(lái)多邊形的邊數(shù)是____.
(3)一個(gè)凸多邊形的某一個(gè)內(nèi)角的外角與其余內(nèi)角的和恰為500°,那么這個(gè)多邊形的邊數(shù)是_____.
【答案】18 130° 10,11,12 4或5
【解析】
(1)設(shè)這個(gè)多邊形的邊數(shù)為a,根據(jù)凸多邊形的內(nèi)角和公式列出不等式,再根據(jù)a的整數(shù)性可得出a的值,從而可得內(nèi)角和,然后減去
即可得出答案;
(2)先根據(jù)內(nèi)角和公式求出剪完后多邊形的邊數(shù),從而可得原來(lái)多邊形的邊數(shù);
(3)設(shè)這個(gè)多邊形的邊數(shù)為
,這個(gè)內(nèi)角的度數(shù)為x,先根據(jù)內(nèi)角和公式、外角的定義列出等式,求出n的等式,再根據(jù)n為正整數(shù)、
求解即可.
(1)設(shè)這個(gè)多邊形的邊數(shù)為
,則這個(gè)多邊形的內(nèi)角和為![]()
由題意得![]()
解得![]()
因a為正整數(shù)
則
,除去的這個(gè)內(nèi)角的度數(shù)為![]()
故答案為:18;
;
(2)設(shè)剪去一個(gè)角后,形成的多邊形的邊數(shù)為![]()
則![]()
解得![]()
因?yàn)橐粋(gè)多邊形截去一個(gè)角后,其邊數(shù)可以增加1條、不變、減少1條
所以原來(lái)多邊形的邊數(shù)為10或11或12
故答案為:10或11或12;
(3)設(shè)這個(gè)多邊形的邊數(shù)為
,這個(gè)內(nèi)角的度數(shù)為x
由題意得![]()
解得![]()
為正整數(shù)
是
的倍數(shù)
又
,即有![]()
或![]()
代入
,解得
或5
故答案為:4或5.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小強(qiáng)在做課后習(xí)題時(shí),遇到這樣一道題:“如圖所示,
、
兩村莊在一條河的兩岸,從
村莊去
村莊,需要在河上造一座橋
,請(qǐng)問(wèn)橋造在何處從
村莊去
村莊的路徑最短?(假定河的兩岸是平行的直線(xiàn),橋與河垂直)”
![]()
小強(qiáng)的解題思路,因?yàn)闃蚺c河岸垂直,線(xiàn)段
是一個(gè)不變的量,將它平移到
處得線(xiàn)段
,總的路程
與
是相等的,故要使
最短,就是求點(diǎn)
到點(diǎn)
最短即可,所以點(diǎn)
應(yīng)是
與
的交點(diǎn).根據(jù)上述材料解答下列問(wèn)題:如圖所示:
、
兩個(gè)駐軍地被兩條河隔開(kāi),上級(jí)安排緊急任務(wù),現(xiàn)要求一名士兵從
地出發(fā)到
地完成這項(xiàng)任務(wù),現(xiàn)要修兩座與河岸垂直的橋,問(wèn)橋建在何處使得這名士兵走的路徑最短?(假定河的兩岸是平行的直線(xiàn),河
與
的寬為
,河
與
的寬為
).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)
經(jīng)過(guò)點(diǎn)A(
,0),B(
,0),且與y軸相交于點(diǎn)C.
(1)求這條拋物線(xiàn)的表達(dá)式;
(2)求∠ACB的度數(shù);
(3)設(shè)點(diǎn)D是所求拋物線(xiàn)第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線(xiàn)段AC上,且DE⊥AC,當(dāng)△DCE與△AOC相似時(shí),求點(diǎn)D的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若將一副三角板按如圖所示的方式放置,則下列結(jié)論:①
;②如果
,則有
;③如果
,則有
;④如果
,必有
;其中正確的有( )
![]()
A.①②③B.①②④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有長(zhǎng)為22米的籬笆,一面利用墻(墻的最大可用長(zhǎng)度為14米),圍成中間隔有一道籬笆的長(zhǎng)方形花圃,有以下兩種圍法.
(1)如圖1,設(shè)花圃的寬AB為x米,面積為y米2,求y與x之間的含函數(shù)表達(dá)式,并確定x的取值范圍;
(2)如圖2,為了方便出入,在建造籬笆花圃時(shí),在BC上用其他材料造了寬為1米的兩個(gè)小門(mén),設(shè)花圃的寬AB為a米,面積為S米2,求S與a之間的函數(shù)表達(dá)式及S的最大值?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,六邊形 ABCDEF 中,∠A+∠B+∠C=∠D+∠E+∠F,猜想可 得六邊形 ABCDEF 中必有兩條邊是平行的.
![]()
(1)根據(jù)圖形寫(xiě)出你的猜想: ∥ ;
(2)請(qǐng)證明你在(1)中寫(xiě)出的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線(xiàn)MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線(xiàn)MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當(dāng)D為AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿(mǎn)足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
“ a 2 ≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式.例如:
x2 4x 5 x2 4x 4 1 x 22 1 ,
∵ x 22 ≥0,
∴ x 22 1 ≥1,
∴ x2 4x 5 ≥1.
試?yán)?/span>“配方法”解決下列問(wèn)題:
(1)填空: x2 4x 5 ( x )2+ ;
(2)已知 x2 4x y2 2y 5 0 ,求 x y 的值;
(3)比較代數(shù)式 x2 1與2x 3 的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在菱形ABCD 中,點(diǎn)E,O,F分別是邊AB,AC,AD的中點(diǎn),連接CE、CF、OE、OF.
(1)求證:△BCE≌△DCF;
(2)當(dāng)AB與BC滿(mǎn)足什么條件時(shí),四邊形AEOF正方形?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com