| A. | $\frac{π}{9}$ | B. | $\frac{{\sqrt{3}π}}{9}$ | C. | $\frac{{3\sqrt{3}}}{2}-\frac{2π}{3}$ | D. | $\frac{{3\sqrt{3}}}{2}-\frac{{\sqrt{3}π}}{2}$ |
分析 首先根據(jù)圓周角定理得出扇形半徑以及圓周角度數(shù),進(jìn)而利用銳角三角函數(shù)關(guān)系得出BC,AC的長(zhǎng),利用S△ABC-S扇形BOE=圖中陰影部分的面積求出即可.
解答 解:連接BD,BE,BO,EO,![]()
∵B,E是半圓弧的三等分點(diǎn),
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAC=∠EBA=30°,
∴BE∥AD,
∵弧BE的長(zhǎng)為$\frac{2}{3}$π,
∴$\frac{60π×R}{180}$=$\frac{2}{3}$π,
解得:R=2,
∴AB=ADcos30°=2$\sqrt{3}$,
∴BC=$\frac{1}{2}$AB=$\sqrt{3}$,
∴AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=3,
∴S△ABC=$\frac{1}{2}$×BC×AC=$\frac{1}{2}$×$\sqrt{3}$×3=$\frac{3\sqrt{3}}{2}$,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面積相等,
∴圖中陰影部分的面積為:S△ABC-S扇形BOE=$\frac{3\sqrt{3}}{2}$-$\frac{60π×{2}^{2}}{360}$=$\frac{3\sqrt{3}}{2}$-$\frac{2}{3}$π.
故選:C.
點(diǎn)評(píng) 此題主要考查了扇形的面積計(jì)算以及三角形面積求法等知識(shí),根據(jù)已知得出△BOE和△ABE面積相等是解題關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -1 | B. | -2 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (-2a2)•3a=6a3 | B. | (-2x2)3=-8x6 | C. | a3+2a2=2a5 | D. | a3+a3=2a6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 51° | B. | 60° | C. | 78° | D. | 88° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (a+b)(-a+b) | B. | (m+n)(m+n) | C. | (-2x+y)(2x-y) | D. | -(p-q)(q-p) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 5 | B. | 6 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com