【題目】已知⊙O的半徑為2,點P是⊙O內(nèi)一點,且OP=
,過P作互相垂直的兩條弦AC、BD,則四邊形ABCD面積的最大值為( )
A.4
B.5
C.6
D.7
【答案】B
【解析】解:如圖:連接OA、OD,作OE⊥AC于E,OF⊥BD于F,![]()
∵AC⊥BD,
∴四邊形OEPF為矩形,
∵OA=OD=2,OP=
,
設OE為x(x>0),
根據(jù)勾股定理得,OF=EP=
=
,
在Rt△AOE中,AE=
= ![]()
∴AC=2AE=2
,
同理得,BD=2DF=2
=2
,
又∵任意對角線互相垂直的四邊形的面積等于對角線乘積的
,
∴S四邊形ABCD=
AC×BD=
×2
×2
=2
=2 ![]()
當x2=
即:x=
時,四邊形ABCD的面積最大,等于2
=5.
答案為:B.
作出弦心距,根據(jù)S四邊形ABCD=對角線乘積的一半,列出函數(shù)關系式,配成頂點式,求出最值.
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關系的圖象是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列一段文字:在直角坐標系中,已知兩點的坐標是M(x1,y1),N(x2,y2)),M,N兩點之間的距離可以用公式MN=
計算.解答下列問題:
![]()
(1)若點P(2,4),Q(﹣3,﹣8),求P,Q兩點間的距離;
(2)若點A(1,2),B(4,﹣2),點O是坐標原點,判斷△AOB是什么三角形,并說明理由.
(3)已知點A(5,5),B(-4,7),點P在x軸上,且要使PA+PB的和最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.平移不改變圖形的形狀和大小,而旋轉(zhuǎn)則改變圖形的形狀和大小
B.平移和旋轉(zhuǎn)的共同點是改變了圖形的位置,而圖形的形狀大小沒有變化
C.圖形可以向某方向平移一定距離,也可以向某方向旋轉(zhuǎn)一定距離
D.在平移和旋轉(zhuǎn)圖形中,對應角相等,對應線段相等且平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了綠化校園,計劃購買一批榕樹和香樟樹,經(jīng)市場調(diào)查,榕樹的單價比香樟樹少20元,購買3棵榕樹和2棵香樟樹共需340元.
(1)榕樹和香樟樹的單價各是多少?
(2)根據(jù)學校實際情況,需購買兩種樹苗共150棵,總費用不超過10840元,且購買香樟樹的棵數(shù)不少于榕樹的1.5倍,請你算算該校本次購買榕樹和香樟樹共有哪幾種方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在平面直角坐標系中,點A(o,m),點B(n,0),m, n滿足
.
(1)求A,B的坐標.
(2)如圖1, E為第二象限內(nèi)直線AB上的一點,且滿足
,求點E的橫坐標.
(3)如圖2,平移線段BA至OC, B與O是對應點,A與C是對應點,連接AC, E為BA的延長線上一點,連接EO, OF平分∠COE, AF平分∠EAC, OF交AF于點F,若∠ABO+∠OEB=α,請在圖2中將圖形補充完整,并求∠F (用含α的式子表示)
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在網(wǎng)格(每個小正方形的邊長均為1)中選取9個格點(格線的交點稱為格點),如果以A為圓心,r為半徑畫圓,選取的格點中除點A外恰好有3個在圓內(nèi),則r的取值范圍為( )![]()
A.2
<r< ![]()
B.
<r≤3 ![]()
C.
<r<5
D.5<r< ![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,則∠E與∠F之間滿足的數(shù)量關系是( )
A. ∠E=∠FB. ∠E+∠F=180°
C. 3∠E+∠F=360°D. 2∠E-∠F=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形
中,
.
![]()
(1)如圖1,點
為線段
的中點,連接
,
.若
,求線段
的長.
(2)如圖2,
為線段
上一點(不與
,
重合),以
為邊向上構造等邊三角形
,線段
與
交于點
,連接
,
,
為線段
的中點.連接
,
判斷
與
的數(shù)量關系,并證明你的結論.
(3)在(2)的條件下,若
,請你直接寫出
的最小值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com