如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點,點A的坐標(biāo)是(﹣4,0),點B的坐標(biāo)是(0,b)(b>0).P是直線AB上的一個動點,作PC⊥x軸,垂足為C.記點P關(guān)于y軸的對稱點為P´(點P´不在y軸上),連接PP´,P´A,P´C.設(shè)點P的橫坐標(biāo)為a.
(1)當(dāng)b=3時,
①求直線AB的解析式;
②若點P′的坐標(biāo)是(﹣1,m),求m的值;
(2)若點P在第一象限,記直線AB與P´C的交點為D.當(dāng)P´D:DC=1:3時,求a的值;
(3)是否同時存在a,b,使△P´CA為等腰直角三角形?若存在,請求出所有滿足要求的a,b的值;若不存在,請說明理由.
(1)①y=
x+3②
(2)
(3)
或![]()
【解析】解:(1)①設(shè)直線AB的解析式為y=kx+3,
把x=﹣4,y=0代入得:﹣4k+3=0,
∴k=
,
∴直線的解析式是:y=
x+3,
……3分
②由已知得點P的坐標(biāo)是(1,m),
∴m=
×1+3=
; ……4分
(2)∵PP′∥AC,
△PP′D∽△ACD,
∴
=
,即
=
,
∴a=
; ……6分
(3)以下分三種情況討論.
①當(dāng)點P在第一象限時,
1)若∠AP′C=90°,P′A=P′C(如圖1)
過點P′作P′H⊥x軸于點H.
![]()
∴PP′=CH=AH=P′H=
AC.
∴2a=
(a+4)
∴a=![]()
∵P′H=PC=
AC,△ACP∽△AOB
∴
=
=
,即
=
,
∴b=2 ……8分
2)若∠P′AC=90°,P′A=CA (如圖2)
![]()
則PP′=AC
∴2a=a+4
∴a=4
∵P′A=PC=AC,△ACP∽△AOB
∴
=
=1,即
=1
∴b=4 ……10分
3)若∠P′CA=90°,
則點P′,P都在第一象限內(nèi),這與條件矛盾.
∴△P′CA不可能是以C為直角頂點的等腰直角三角形.
![]()
②當(dāng)點P在第二象限時,∠P′CA為鈍角(如圖3),此時△P′CA不可能是等腰直角三角形;
③當(dāng)P在第三象限時,∠P′CA為鈍角(如圖4),此時△P′CA不可能是等腰直角三角形.
∴所有滿足條件的a,b的值為
或
……12分
(1)利用待定系數(shù)法即可求得函數(shù)的解析式;
(2)把(-1,m)代入函數(shù)解析式即可求得m的值;可以證明△PP′D∽△ACD,根據(jù)相似三角形的對應(yīng)邊的比相等,即可求解;
(3)點P在第一像限,若使△P'CA為等腰直角三角則∠AP′C=90°或∠P′AC=90°或∠P′CA=90°就三種情況分別討論求出出所有滿足要求的a的值即可.
科目:初中數(shù)學(xué) 來源: 題型:
| BD |
| AB |
| 5 |
| 8 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 5 |
| 29 |
| 5 |
| 29 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k |
| x |
| k |
| x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com