【題目】如圖,△ABC中,∠BAC=120°,AB=AC=6.P是底邊BC上的一個動點(P與B、C不重合),以P為圓心,PB為半徑的⊙P與射線BA交于點D,射線PD交射線CA于點E.
(1)若點E在線段CA的延長線上,設BP=x,AE=y,求y關于x的函數(shù)關系式,并寫出x的取值范圍.
(2)當BP=
時,試說明射線CA與⊙P是否相切.
(3)連接PA,若S△APE=
S△ABC,求BP的長.
![]()
【答案】(1)
(0<x<
);(2)相切;(3)
或
或
.
【解析】(1)過A作AF⊥BC于F,過P作PH⊥AB于H,∵∠BAC=120°,AB=AC=6,∴∠B=∠C=30°,∵PB=PD,∴∠PDB=∠B=30°,CF=ACcos30°=6×
=
,∴∠ADE=30°,∴∠DAE=∠CPE=60°,∴∠CEP=90°,∴CE=AC+AE=6+y,∴PC=
=
,∵BC=
,∴PB+CP=
=
,∴
,∵BD=2BH=
x<6,∴x<
,∴x的取值范圍是0<x<
;
(2)相切.理由如下:
∵BP=
,∴CP=
,∴PE=
PC=
=PB,∴射線CA與⊙P相切;
(3)當D點在線段BA上時,連接AP,∵S△ABC=
BCAF=
=
,∵S△APE=
AEPE=
y
×(6+y)=
S△ABC=
,解得:y=
,代入
得x=
.
當D點BA延長線上時,PC=
EC=
(6﹣y),∴PB+CP=x+
(6﹣y)=
,∴
,∵∠PEC=90°,∴PE=
=
=
(6﹣y),∴S△APE=
AEPE=
x=
y
(6﹣y)=
S△ABC=
,解得y=
或
,代入
得x=
或
.
綜上可得,BP的長為
或
或
.
![]()
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC中,∠C=90°,線段DE在射線BC上,且DE=AC,線段DE沿射線BC運動,開始時,點D與點B重合,點D到達點C時運動停止,過點D作DF=DB,與射線BA相交于點F,過點E作BC的垂線,與射線BA相交于點G.設BD=x,四邊形DEGF與△ABC重疊部分的面積為S,S關于x的函數(shù)圖象如圖2所示(其中0<x≤m,1<x≤m,m<x≤3時,函數(shù)的解析式不同).
(1)填空:BC的長是 ;
(2)求S關于x的函數(shù)關系式,并寫出x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)便民超市為了了解顧客的消費情況,在該小區(qū)居民中進行調查,詢問每戶人家每周到超市的次數(shù),下圖是根據調查結果繪制的,請問:![]()
(1)這種統(tǒng)計圖通常被稱為什么統(tǒng)計圖?
(2)此次調查共詢問了多少戶人家?
(3)超過半數(shù)的居民每周去多少次超市?
(4)請將這幅圖改為扇形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OCDE的頂點C和E分別在y軸的正半軸和x軸的正半軸上,OC=8,OE=17,拋物線
與y軸相交于點A,拋物線的對稱軸與x軸相交于點B,與CD交于點K.
(1)將矩形OCDE沿AB折疊,點O恰好落在邊CD上的點F處.
①點B的坐標為( 、 ),BK的長是 ,CK的長是 ;
②求點F的坐標;
③請直接寫出拋物線的函數(shù)表達式;
(2)將矩形OCDE沿著經過點E的直線折疊,點O恰好落在邊CD上的點G處,連接OG,折痕與OG相交于點H,點M是線段EH上的一個動點(不與點H重合),連接MG,MO,過點G作GP⊥OM于點P,交EH于點N,連接ON,點M從點E開始沿線段EH向點H運動,至與點N重合時停止,△MOG和△NOG的面積分別表示為S1和S2,在點M的運動過程中,S1S2(即S1與S2的積)的值是否發(fā)生變化?若變化,請直接寫出變化范圍;若不變,請直接寫出這個值.
溫馨提示:考生可以根據題意,在備用圖中補充圖形,以便作答.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題
甲、乙兩人同時從相距25千米的A地去B地,甲騎車乙步行,甲的速度是乙的速度的3倍,甲到達B地停留40分鐘,然后從B地返回A地,在途中遇見乙,這時距他們出發(fā)的時間恰好3小時,求兩人的速度各是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,OA⊥OC,OB⊥OD,下面結論中,其中說法正確的是( 。 ![]()
①∠AOB=∠COD;②∠AOB+∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A、B、C在同一直線上,△ABD和△BCE都是等邊三角形.則在下列結論中:①AP=DQ,②EP=EC,③PQ=PB,④∠AOB=∠BOC=∠COE.正確的結論是(填寫序號). ![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com