分析 (1)由于∠ACB=90°,AC=BC,所以△CBD繞點(diǎn)C逆時旋轉(zhuǎn)90°可得到△CAD′,于是利用網(wǎng)格特點(diǎn)和性質(zhì)的性質(zhì)畫出點(diǎn)D的對應(yīng)點(diǎn)D′即可;
(2)由于線段CD掃過的圖形為扇形,此扇形是以C點(diǎn)為圓心,CD為半徑,圓心角為90°的扇形,所以利用扇形面積公式計(jì)算即可.
解答 解:(1)如圖,△CAD′為所作;![]()
(2)CD=$\sqrt{{1}^{2}+{1}^{2}}$=$\sqrt{2}$,
線段CD掃過的圖形的面積=$\frac{90•π•(\sqrt{2})^{2}}{360}$=$\frac{1}{2}$π.
點(diǎn)評 本題考查了作圖-旋轉(zhuǎn)變換:根據(jù)旋轉(zhuǎn)的性質(zhì)可知,對應(yīng)角都相等都等于旋轉(zhuǎn)角,對應(yīng)線段也相等,由此可以通過作相等的角,在角的邊上截取相等的線段的方法,找到對應(yīng)點(diǎn),順次連接得出旋轉(zhuǎn)后的圖形.也考查了扇形面積公式.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 368×103cm | B. | 36.8×104cm | C. | 3.68×105cm | D. | 3.68×106cm |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com