分析 (1)根據(jù)點(diǎn)A、B的縱坐標(biāo)相等判斷出AB∥x軸,然后求出點(diǎn)C、D、E到AB的距離,再根據(jù)“環(huán)繞點(diǎn)”的定義判斷;
(2)當(dāng)點(diǎn)P在線段AB的上方,當(dāng)點(diǎn)P在線段AB的下方,根據(jù)點(diǎn)P到線段AB的距離為1時(shí),即可得到結(jié)論;
(3)當(dāng)點(diǎn)P在線段AB的下方時(shí),且到線段AB的最小距離是1時(shí),當(dāng)點(diǎn)P在線段AB的上方時(shí),且到點(diǎn)A的距離是1時(shí),即可得到結(jié)論.
解答
解:(1)由“環(huán)繞點(diǎn)”的定義可知:點(diǎn)P到直線AB的距離d應(yīng)滿足:d≤1,
∵A、B兩點(diǎn)的縱坐標(biāo)都是3,
∴AB∥x軸,
∴點(diǎn)C到直線AB的距離為|1.5-3|=1.5>1,
點(diǎn)D到直線AB的距離為|3.5-3|=0.5<1,
點(diǎn)E到直線AB的距離為|3-3|=0<1,
∴點(diǎn)D和E是線段AB的環(huán)繞點(diǎn);
故答案為:點(diǎn)D和E;
(2)當(dāng)點(diǎn)P在線段AB的上方,點(diǎn)P到線段AB的距離為1時(shí),m=2;
當(dāng)點(diǎn)P在線段AB的下方,點(diǎn)P到線段AB的距離為1時(shí),m=4;
所以點(diǎn)P的橫坐標(biāo)m的取值范圍為:2≤m≤4;
(3)當(dāng)點(diǎn)P在線段AB的下方時(shí),且到線段AB的最小距離是1時(shí),r=1;
當(dāng)點(diǎn)P在線段AB的上方時(shí),且到點(diǎn)A的距離是1時(shí),如圖,過M作MC⊥AB,
則CM=2,AC=2,
連接MA并延長交⊙M于P,
則PA=1,
∴MP=2$\sqrt{2}$+1,即r=2$\sqrt{2}$+1.
∴⊙M的半徑r的取值范圍是1≤r≤2$\sqrt{2}$+1.
點(diǎn)評(píng) 本題考查了坐標(biāo)與圖形性質(zhì),讀懂題目信息,理解“環(huán)繞點(diǎn)”的定義是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,2) | B. | (1,0) | C. | (2,0) | D. | (0,-3) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1,1) | B. | (1,5) | C. | (1,2) | D. | (1,4) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 6 | B. | 8 | C. | 10 | D. | 12 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com