【題目】將一個有45°角的三角板的直角頂點放在一張寬為3cm的紙帶邊沿上,另一個頂
點在紙帶的另一邊沿上,測得三角板的一邊與紙帶的一邊所在的直線成30°角,如圖(3),
則三角板的最大邊的長為( )
A.
B.
C.![]()
D. ![]()
![]()
科目:初中數(shù)學 來源: 題型:
【題目】由若干邊長為1的小正方形拼成一系列“L”形圖案(如圖1).![]()
(1)當“L”形由7個正方形組成時,其周長為;
(2)如圖2,過格點D作直線EF,分別交AB,AC于點E,F(xiàn).
①試說明AEAF=AE+AF;
②若“L”形由n個正方形組成時,EF將“L”形分割開,直線上方的面積為整個“L”形面積的一半,試求n的取值范圍以及此時線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以BC為底邊的等腰△ABC,點D,E,G分別在BC,AB,AC上,且EG∥BC,DE∥AC,延長GE至點F,使得BE=BF.
(1)求證:四邊形BDEF為平行四邊形;
(2)當∠C=45°,BD=2時,求D,F兩點間的距離.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1經過過點P(2,2),分別交x軸、y軸于點A(4,0),B。
(1)求直線l1的解析式;
(2)點C為x軸負半軸上一點,過點C的直線l2:
交線段AB于點D。
如圖1,當點D恰與點P重合時,點Q(t,0)為x軸上一動點,過點Q作QM⊥x軸,分別交直線l1、l2于點M、N。若
,MN=2MQ,求t的值;
如圖2,若BC=CD,試判斷m,n之間的數(shù)量關系并說明理由。
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,求水管AB的長;
(2)如圖2,在△ABC中,D是BC邊上的點,已知AB=13,AD=12,AC=15,BD=5,求DC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,PA、PB分別與⊙O相切于點A、B,點M在PB上,且OM∥AP,MN⊥AP,垂足為N. ![]()
(1)求證:OM=AN;
(2)若⊙O的半徑R=3,PA=9,求OM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等邊三角形,D是BC邊上的一個動點(點D不與B,C重合)△ADF是以AD為邊的等邊三角形,過點F作BC的平行線交射線AC于點E,連接BF.
![]()
(1)如圖1,求證:△AFB≌△ADC;
(2)請判斷圖1中四邊形BCEF的形狀,并說明理由;
(3)若D點在BC 邊的延長線上,如圖2,其它條件不變,請問(2)中結論還成立嗎?如果成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的象經過A(﹣1,0)、B(3,0)、N(2,3)三點,且與y軸交于點C.![]()
(1)求這個二次函數(shù)的解析式,并寫出頂點M及點C的坐標;
(2)若直線y=kx+d經過C、M兩點,且與x軸交于點D,試證明四邊形CDAN是平行四邊形;
(3)點P是這個二次函數(shù)的對稱軸上一動點,請?zhí)剿鳎菏欠翊嬖谶@樣的點P,使以點P為圓心的圓經過A、B兩點,并且與直線CD相切?如果存在,請求出點P的坐標;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知函數(shù)
的圖象與反比例函數(shù)
的圖象的一個交點為A
,則
= ________.
(2)如果
滿足
,試求代數(shù)式
的值.
(3)已知
,
,求
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com