【題目】如圖,點A在∠MON的邊ON上,AB⊥OM于B,AE=OB,DE⊥ON于E,AD=AO,DC⊥OM于C.
(1)求證:四邊形ABCD是矩形;
(2)若DE=3,OE=9,求AB、AD的長;
![]()
【答案】(1) 見解析;(2) AB、AD的長分別為3和5
【解析】
(1)根據(jù)全等三角形的判定和性質(zhì)以及矩形的判定解答即可;
(2)根據(jù)全等三角形的性質(zhì)和勾股定理解答即可.
證明:(1)∵AB⊥OM于B,DE⊥ON于E,
∴∠ABO=∠DEA=90°.
在Rt△ABO與Rt△DEA中,
∵![]()
∴Rt△ABO≌Rt△DEA(HL)
∴∠AOB=∠DAE.
∴AD∥BC.
又∵AB⊥OM,DC⊥OM,
∴AB∥DC.
∴四邊形ABCD是平行四邊形,
∵∠ABC=90°,
∴四邊形ABCD是矩形;
(2)由(1)知Rt△ABO≌Rt△DEA,
∴AB=DE=3,
設(shè)AD=x,則OA=x,AE=OE﹣OA=9﹣x.
在Rt△DEA中,由AE2+DE2=AD2得:(9﹣x)2+32=x2,
解得x=5.
∴AD=5.即AB、AD的長分別為3和5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線
的圖象過
,
,
三點,頂點為
.
![]()
(1)求拋物線的解析式;
(2)設(shè)點
在
軸上,且
,求
的長;
(3)若
軸且
在拋物線上,過
作
于
,
在直線
上運動,點
在
軸上運動,是否存在這樣的點
、
使以
、
、
為頂點的三角形與
相似?若存在,請求出點
、
的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形
和正方形
的頂點
在同一條直線上,頂點
在同一條直線上.
是
的中點,
的平分線
過點
,交
于點
連接
交
于點
連接
.以下四個結(jié)論:①
;②
;③
;④![]()
,其中正確的結(jié)論是____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于世界人口增長、水污染以及水資源浪費等原因,全世界面臨著淡水資源不足的問題,我國是世界上嚴(yán)重缺水的國家之一.節(jié)約用水是水資源合理利用的關(guān)鍵所在,是最快捷、最有效、最可行的維護(hù)水資源可持續(xù)利用的途徑之一,為了調(diào)查居民的用水情況,有關(guān)部門對某小區(qū)的20戶居民的月用水量進(jìn)行了調(diào)查,數(shù)據(jù)如下(單位
):
6.7 8.7 7.3 11.4 7.0 6.9 11.7 9.7 10.0 9.7
7.3 8.4 10.6 8.7 7.2 8.7 10.5 9.3 8.4 8.7
整理數(shù)據(jù):按如下分段整理樣本數(shù)據(jù)并補充表格(表1):
用水量 |
|
|
|
|
人數(shù) |
| 6 | b | 4 |
分析數(shù)據(jù):補全下列表格中的統(tǒng)計量(表2):
平均數(shù) | 中位數(shù) | 眾數(shù) |
8.85 |
| 8.7 |
得出結(jié)論:
(1)表中的
,
,
;
(2)若用表1中的數(shù)據(jù)制作一個扇形統(tǒng)計圖,
所占的扇形圓心角的度數(shù)為 度;
(3)如果該小區(qū)有住戶400戶,根據(jù)樣本估計用水量在
的居民有多少戶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
的圖象如圖所示,下列結(jié)論:①
,②
,③
,④
,其中正確結(jié)論的個數(shù)為( )
![]()
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為坐標(biāo)原點,ABCD的邊AB在x軸上,頂點D在y軸的正半軸上,點C在第一象限,將△AOD沿y軸翻折,使點A落在x軸上的點E處,點B恰好為OE的中點,DE與BC交于點F.若y=
(x>0)的圖象經(jīng)過點C且S△BEF=
,則k的值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=
的圖象相交于點A(﹣1,4)和點B(4,n).
![]()
(1)求這兩個函數(shù)的解析式;
(2)已知點M在線段AB上,連接OA,OB,OM,若S△AOM=
S△BOM,求點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AE是∠CAB的角平分線,BM平分∠ABC交AE于點M,經(jīng)過B,M兩點的⊙O交BC于點G,交AB于點F,FB恰為⊙O的直徑.
(1)求證:AE與⊙O相切;
(2)當(dāng)BC=6,cosC=
,求⊙O的半徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5,過點B作BD⊥AB,點C,D都在AB上方,AD交△BCD的外接圓⊙O于點E.
(1)求證:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的長.
②若△BDC為直角三角形,求所有滿足條件的BD的長.
(3)若BC=EC=![]()
,則
= .(直接寫出結(jié)果即可)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com