分析 在△ABH中,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DH=$\frac{1}{2}$AB=AD,從而得到∠1=∠2,同理可證出∠3=∠4,從而得到∠DHF=∠DAF,再利用三角形的中位線定理證明四邊形ADEF是平行四邊形,可得到∠DAF=∠DEF,即可證出∠DHF=∠DEF.
解答
解:∠DHF=∠DEF,
如圖.∵AH⊥BC于H,
又∵D為AB的中點(diǎn),
∴DH=$\frac{1}{2}$AB=AD,
∴∠1=∠2,
同理可證:∠3=∠4,
∴∠1+∠3=∠2+∠4,
即∠DHF=∠DAF,
∵E、F分別為BC、AC的中點(diǎn),
∴EF∥AB且EF=$\frac{1}{2}$AB,
即EF∥AD且EF=AD,
∴四邊形ADEF是平行四邊形,
∴∠DAF=∠DEF,
∴∠DHF=∠DEF=50°.
故答案是:50°.
點(diǎn)評(píng) 此題主要考查了平行四邊形的性質(zhì)與判定,三角形的中位線定理,直角三角形的性質(zhì),解決題目的關(guān)鍵是證明∠DHF=∠DAF與∠DAF=∠DEF.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 三角形的一個(gè)外角等于兩個(gè)內(nèi)角的和 | |
| B. | 三角形的外角大于任何一個(gè)內(nèi)角 | |
| C. | 一個(gè)三角形中,至少有一個(gè)角大于60° | |
| D. | 多邊形中最多有三個(gè)內(nèi)角是銳角 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 當(dāng)x=2時(shí),$\frac{x+1}{x-2}$的值為零 | B. | 無論x為何值,$\frac{3}{x+1}$不可能是整數(shù)值 | ||
| C. | 無論x為何值,$\frac{3}{{{x^2}+1}}$的值總為正數(shù) | D. | 當(dāng)x≠3時(shí),$\frac{x-3}{x}$有意義 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 35° | B. | 45° | C. | 55° | D. | 65° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com