分析 (1)由于反比例函數(shù)的圖象是一個中心對稱圖形,點B、D是正比例函數(shù)與反比例函數(shù)圖象的交點,所以點B與點D關(guān)于點O成中心對稱,則OB=OD,又OA=OC,根據(jù)對角線互相平分的四邊形是平行四邊形,可得出四邊形ABCD的形狀;
(2)把點B(p,$\sqrt{3}$)代入y=$\frac{\sqrt{3}}{x}$即可求出p的值;過B作BE⊥x軸于E,在Rt△BOE中,根據(jù)正切函數(shù)的定義求出tanα的值,得出α的度數(shù);要求m的值,首先解Rt△BOE,得出OB的長度,然后根據(jù)進(jìn)行的對角線相等得出OA=OB=OC=OD,從而求出m的值
(3)假設(shè)四邊形ABCD為菱形,根據(jù)菱形的對角線垂直且互相平分,可知AC⊥BD,且AC與BD互相平分,又AC在x軸上,所以BD應(yīng)在y軸上,這與“點B、D分別在第一、三象限”矛盾,所以四邊形ABCD不可能為菱形.
解答
解:(1)∵反比例函數(shù)的圖象是一個中心對稱圖形,點B、D是正比例函數(shù)與反比例函數(shù)圖象的交點,
所以點B與點D關(guān)于點O成中心對稱,則OB=OD,又OA=OC,根據(jù)對角線互相平分的四邊形是平行四邊形,
∴四邊形ABCD是平行四邊形.
故答案為:平行四邊形;
(2)∵點B(p,$\sqrt{3}$)在y=$\frac{\sqrt{3}}{x}$的圖象上,
∴$\sqrt{3}$=$\frac{\sqrt{3}}{p}$,
∴p=1,
過B作BE⊥x軸于E,則
在Rt△BOE中,α=60°,
∴OB=2.
又∵點B、D是正比例函數(shù)與反比例函數(shù)圖象的交點,
∴點B、D關(guān)于原點O成中心對稱,
∴OB=OD=2.
∵四邊形ABCD為矩形,且A(-m,0),C(m,0)
∴OA=OB=OC=OD=2,
∴m=2;
(3)四邊形ABCD不能是菱形.理由如下:
若四邊形ABCD為菱形,則對角線AC⊥BD,且AC與BD互相平分,
因為點A、C的坐標(biāo)分別為(-m,0)、(m,0),
所以點A、C關(guān)于原點O對稱,且AC在x軸上,
所以BD應(yīng)在y軸上,
這與“點B、D分別在第一、三象限”矛盾,
所以四邊形ABCD不可能為菱形.
點評 本題主要考查了四邊形綜合題,其中涉及到了平行四邊形的判定,矩形、菱形的性質(zhì)及三角函數(shù)的定義等知識,綜合性較強,難度適中.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com