【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學學習和研究中經(jīng)常用到,如下是一個案例,請補充完整.
原題:如圖1,在平行四邊形
中,點
是
邊上的中點,點
是線段
上一點,
的延長線交射線
于點
,若
,求
的值.
![]()
(1)嘗試探究
在圖1中,過點
作
交
于點
,則
和
的數(shù)量關(guān)系是______,
和
的數(shù)量關(guān)系是______,
的值是______;
(2)類比延伸
如圖2,在原題的條件下,當
時,參照問題(1)的研究結(jié)論,請你猜想
的值(用含
的代數(shù)式表示),并證明你的猜想;
(3)拓展遷移
如圖3,梯形
中,
,點
是
延長線上一點,
和
相交于點
,當
,
時,請你求出
的值(用含
、
的代數(shù)式表示).
【答案】(1)(1)
,
,
;(2)見解析;(3)ab.
【解析】
(1)可利用三角形相似、平行四邊形的有關(guān)性質(zhì)求得結(jié)果;(2)體現(xiàn)了“一般”的情形,雖然
不再是一個確定的數(shù)值,但可類比問題(1)的解題思路去猜想、證明
的值;問題(3)的解答體現(xiàn)了“類比”與“轉(zhuǎn)化”的情形,可過點E作
交BD的延長線于點H,將(1)、(2)問中的解題方法推廣轉(zhuǎn)化到梯形中.
解 (1)解:(1)如圖1:
∵EH//AB.
∴![]()
又∵E為BC中點,
∴EH為△BCG的中位線,
∴CG=2EH.
故答案為
,
,
.
,
,
.
(2)猜想:
.
證明:如圖1:
∵EH//AB.
∴![]()
∴
,則
.
∵
,
∴
.
∵
,
∴
,
∴
,
∴
,
∴
.
(3)如下圖所示,過點
作
交
的延長線于點
,則有
.
![]()
∵
,
∴
.
∴
,
∴
.
又∵
,
∴
.
∵
,
∴
.
∴
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AB=4,△BCD為等邊三角形,點E為△BCD圍成的區(qū)域(包括各邊)內(nèi)的一點,過點E作EM∥AB,交直線AC于點M,作EN∥AC,交直線AB于點N,則
AN+AM的最大值為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB 圍成的圖形稱為該拋物線對應的準蝶形,線段AB稱為碟寬,頂點M 稱為碟頂.
![]()
(1)由定義知,取AB中點N,連結(jié)MN,MN與AB的關(guān)系是_____.
(2)拋物線y=
對應的準蝶形必經(jīng)過B(m,m),則m=_____,對應的碟寬AB是_____.
(3)拋物線y=ax2﹣4a﹣
(a>0)對應的碟寬在x 軸上,且AB=6.
①求拋物線的解析式;
②在此拋物線的對稱軸上是否有這樣的點P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB.
(1)求證:DC為⊙O的切線;
(2)若⊙O的半徑為3,AD=4,求CD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了了解某校初中各年級學生每天的平均睡眠時間(單位:h,精確到1h),抽樣調(diào)查了部分學生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息,回答下列問題:
(1)求出扇形統(tǒng)計圖中百分數(shù)a的值為 ,所抽查的學生人數(shù)為 .
(2)求出平均睡眠時間為8小時的人數(shù),并補全頻數(shù)直方圖.
(3)求出這部分學生的平均睡眠時間的眾數(shù)和平均數(shù).
(4)如果該校共有學生1200名,請你估計睡眠不足(少于8小時)的學生數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學生?
(2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果點D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是( 。
A. AD:DB=AE:EC B. DE:BC=AD:AB
C. BD:AB=CE:AC D. AB:AC=AD:AE
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,帆船A和帆船B在太湖湖面上訓練,O為湖面上的一個定點,教練船靜候于O點,訓練時要求A、B兩船始終關(guān)于O點對稱.以O為原點,建立如圖所示的坐標系,x軸、y軸的正方向分別表示正東、正北方向.設(shè)A、B兩船可近似看成在雙曲線y=
上運動,湖面風平浪靜,雙帆遠影優(yōu)美,訓練中當教練船與A、B兩船恰好在直線y=x上時,三船同時發(fā)現(xiàn)湖面上有一遇險的C船,此時教練船測得C船在東南45°方向上,A船測得AC與AB的夾角為60°,B船也同時測得C船的位置(假設(shè)C船位置不再改變,A、B、C三船可分別用A、B、C三點表示).
![]()
(1)發(fā)現(xiàn)C船時,A、B、C三船所在位置的坐標分別為A(_______,_______)、B(_______,_______)和C(_______,_______);
(2)發(fā)現(xiàn)C船,三船立即停止訓練,并分別從A、O、B三點出發(fā)沿最短路線同時前往救援,設(shè)A、B兩船的速度相等,教練船與A船的速度之比為3:4,問教練船是否最先趕到?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB:y=kx+b與x軸.y軸分別相交于點A(1,0)和點B(0,2),以線段AB為邊在第一象限作正方形ABCD.
(1)求直線AB的解析式;
(2)求點D的坐標;
(3)若雙曲線
(k>0)與正方形的邊CD紿終有一個交點,求k的取值范圍.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com