【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感.他驚喜的發(fā)現(xiàn):當(dāng)兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明.下面是小聰利用圖1證明勾股定理的過程:
(1)將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
![]()
(2)請參照上述證法,利用圖2完成下面的證明.
![]()
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.
求證:a2+b2=c2.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和,化簡整理即可得到勾股定理表達(dá)式.具體:(1) 連接DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b-a,表示出S四邊形ADCB, 兩者相等,整理即可得證; (2)證法(一) 首先連結(jié)BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證; 證法二:連接BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,表示出S五邊形ACBED,兩者相等,整理即可得證.
(1)證明:連接DB,過點(diǎn)D作BC邊上的高DF,則DF=EC=b-a.
![]()
∵S四邊形ADCB=S△ACD+S△ABC=
b2+
ab,
又∵S四邊形ADCB=S△ADB+S△DCB=
c2+
a(b-a),
∴
b2+
ab=
c2+
a(b-a).
∴a2+b2=c2.
(2)證法一:連接BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a.
![]()
∵S五邊形ACBED=S△ACB+S△ABE+S△AED=
ab+
b2+
ab,
又∵S五邊形ACBED=S△ACB+S△ABD+S△BDE=
ab+
c2+
a(b-a),
∴
ab+
b2+
ab=
ab+
c2+
a(b-a),
∴a2+b2=c2.
證法二:連接BD,過點(diǎn)B作DE邊上的高BF,則BF=b-a,
∵S五邊形ACBED=S梯形ACBE+S△AED=
b(a+b)+
ab,
又∵S五邊形ACBED=S△ACB+S△ABD+S△BED=
ab+
c2+
a(b-a),
∴
b(a+b)+
ab=
ab+
c2+
a(b-a),
∴a2+b2=c2.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)C.已知實(shí)數(shù)m、n(m<n)分別是方程x2﹣2x﹣3=0的兩根.![]()
(1)求直線AB和OB的解析式.
(2)求拋物線的解析式.
(3)若點(diǎn)P為線段OB上的一個動點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)D在y軸右側(cè)),連接OD、BD.問△BOD的面積是否存在最大值?若存在,求出這個最大值并寫出此時點(diǎn)D的坐標(biāo);若不存在說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上所對應(yīng)的數(shù)為﹣2.
(1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個單位長度,求點(diǎn)B所對應(yīng)的數(shù);
(2)在(1)的條件下,點(diǎn)A以每秒2個單位長度沿數(shù)軸向左運(yùn)動,點(diǎn) B 以每秒2個單位長度沿數(shù)軸向右運(yùn)動,當(dāng)點(diǎn)A運(yùn)動到﹣6所在的點(diǎn)處時,求A,B兩點(diǎn)間距離.
(3)在(2)的條件下,現(xiàn)A點(diǎn)靜止不動,B點(diǎn)再以每秒2個單位長度沿數(shù)軸向左運(yùn)動時,經(jīng)過多長時間A,B兩點(diǎn)相距4個單位長度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個出口P,使A、B兩城鎮(zhèn)到P的距離之和最。筮@個最短距離.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D,E,F(xiàn)是垂足,且AB=5,BC=4,AC=3,則點(diǎn)O到三邊AB,AC,BC的距離分別是( )
A. 1,1,1 B. 2,2,2 C. 1,1.5,2 D. 無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初二年級教師對試卷講評課中學(xué)生參與情況進(jìn)行調(diào)查,調(diào)查項目分為主動質(zhì)疑、獨(dú)立思考、專注聽講、講解題目四項.調(diào)查組隨機(jī)抽取了若干名初中學(xué)生的參與情況,繪制了如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
![]()
(1)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為______度;
(2)請將頻數(shù)分布直方圖補(bǔ)充完整;
(3)如果全市有6000名初三學(xué)生,那么在試卷評講課中,“獨(dú)立思考”的初二學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)試說明 : ∠ABC=∠BFD ;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點(diǎn),CD垂直于x軸,D(5,4),AD=2.若動點(diǎn)E、F同時從點(diǎn)O出發(fā),E點(diǎn)沿折線OA→AD→DC運(yùn)動,到達(dá)C點(diǎn)時停止;F點(diǎn)沿OC運(yùn)動,到達(dá)C點(diǎn)時停止,它們運(yùn)動的速度都是每秒1個單位長度.設(shè)E運(yùn)動x秒時,△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com