112
分析:連接OB、OC,根據(jù)角平分線的定義求出∠BAO,根據(jù)等腰三角形兩底角相等求出∠ABC,再根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得OA=OB,根據(jù)等邊對等角可得∠ABO=∠BAO,再求出∠OBC,然后判斷出點O是△ABC的外心,根據(jù)三角形外心的性質(zhì)可得OB=OC,再根據(jù)等邊對等角求出∠OCB=∠OBC,根據(jù)翻折的性質(zhì)可得OE=CE,然后根據(jù)等邊對等角求出∠COE,再利用三角形的內(nèi)角和定理列式計算即可得解.
解答:

解:如圖,連接OB、OC,
∵∠BAC=56°,AO為∠BAC的平分線,
∴∠BAO=

∠BAC=

×56°=28°,
又∵AB=AC,
∴∠ABC=

(180°-∠BAC)=

(180°-56°)=62°,
∵DO是AB的垂直平分線,
∴OA=OB,
∴∠ABO=∠BAO=28°,
∴∠OBC=∠ABC-∠ABO=62°-28°=34°,
∵DO是AB的垂直平分線,AO為∠BAC的平分線,
∴點O是△ABC的外心,
∴OB=OC,
∴∠OCB=∠OBC=34°,
∵將∠C沿EF(E在BC上,F(xiàn)在AC上)折疊,點C與點O恰好重合,
∴OE=CE,
∴∠COE=∠OCB=34°,
在△OCE中,∠OEC=180°-∠COE-∠OCB=180°-34°-34°=112°.
故答案為:112.
點評:本題考查了線段垂直平分線上的點到線段兩端點的距離相等的性質(zhì),等腰三角形三線合一的性質(zhì),等邊對等角的性質(zhì),以及翻折變換的性質(zhì),綜合性較強(qiáng),難度較大,作輔助線,構(gòu)造出等腰三角形是解題的關(guān)鍵.