分析 (1)首先根據(jù)三角形的中位線定理,得DE∥AB,結(jié)合AF∥BC,根據(jù)兩組對(duì)邊分別平行的四邊形是平行四邊形,可以判斷該四邊形是平行四邊形,再根據(jù)一組鄰邊相等的平行四邊形是菱形即可證明;
(2)根據(jù)菱形的性質(zhì)可以進(jìn)一步得到△FGD≌△FEA,則GD=AE,然后通過(guò)證明三角形相似,即可得到結(jié)論.
解答 (1)證明:∵點(diǎn)D、E分別是BC、AC的中點(diǎn)
∴DE∥AB,BC=2BD,
∵AF∥BC,
∴四邊形ABDF是平行四邊形,
∵BC=2AB,
∴AB=BD,
∴四邊形ABDF是菱形;
(2)證明:∵四邊形ABDF是菱形,
∴AF=DF,
∵點(diǎn)G是AF的中點(diǎn),
∴FG=$\frac{1}{2}$AF,
∵點(diǎn)E是AC的中點(diǎn),
∴AE=CE,
∵AF∥BC,
∴$\frac{EF}{DE}$=$\frac{AE}{CE}$=1,
∴EF=$\frac{1}{2}$DF,
∴FG=EF,
在△AFE和△DFG中
$\left\{\begin{array}{l}{AF=DF}\\{∠F=∠F}\\{EF=GF}\end{array}\right.$,
∴△AFE≌△DFG,
∴∠FAE=∠FDG,
∵AF∥BC,
∴∠FAE=∠C,
∴∠FDG=∠C,
又∵∠EHD=∠DHC,
∴△HED∽△HDC,
∴$\frac{HE}{HD}$=$\frac{HD}{HC}$,
∴DH2=HE•HC.
點(diǎn)評(píng) 本題考查了三角形的中位線定理、菱形的判定和性質(zhì)、全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),熟記定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{6}{sin50°}$米 | B. | $\frac{6}{tan50°}$米 | C. | 6cos50°米 | D. | $\frac{6}{cos50°}$米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | ①② | B. | ②③ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 擴(kuò)大到原來(lái)的3倍 | B. | 擴(kuò)大到原來(lái)的6倍 | ||
| C. | 不變 | D. | 縮小到原來(lái)的$\frac{1}{3}$倍 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com