分析 根據(jù)勾股定理可得;BD2=AB2-AD2,DC2=AC2-AD2,即:BD2-DC2=(AB2-AD2)-(AC2-AD2)=AB2-AC2,將AB、AC的值代入該式求值.
解答 解:
在Rt△ADB中,由勾股定理得:
BD2=AB2-AD2,
在Rt△ADC中,由勾股定理得:
DC2=AC2-AD2,
所以BD2-DC2=(AB2-AD2)-(AC2-AD2),
=(AB2-AD2)-AC2+AD2
=AB2-AC2
=132-82
=105.
點(diǎn)評(píng) 本題主要考查勾股定理,即:在直角三角形中,兩直角邊的平方和等于斜邊的平方,熟記勾股定理的內(nèi)容是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3-π}$ | C. | $\sqrt{{a}^{2}}$ | D. | $\sqrt{\frac{1}{2}}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com