如圖1,拋物線
與
軸交于
兩點(diǎn),與
軸交于點(diǎn)
,連結(jié)AC,若![]()
(1)求拋物線的解析式;
(2)拋物線對(duì)稱(chēng)軸上有一動(dòng)點(diǎn)P,當(dāng)
時(shí),求出點(diǎn)
的坐標(biāo);
(3)如圖2所示,連結(jié)
,
是線段
上(不與
、
重合)的一個(gè)動(dòng)點(diǎn).過(guò)點(diǎn)
作直線
,交拋物線于點(diǎn)
,連結(jié)
、
,設(shè)點(diǎn)
的橫坐標(biāo)為.當(dāng)t為何值時(shí),
的面積最大?最大面積為多少?
![]()
(1) y=x2-3x+2;;(2)(
,
)或(
,
);(3)t=1時(shí),S△BCN的最大值為1.
【解析】
試題分析:(1)已知了C點(diǎn)的坐標(biāo),即可得到OC的長(zhǎng),根據(jù)∠OAC的正切值即可求出OA的長(zhǎng),由此可得到A點(diǎn)的坐標(biāo),將A、C的坐標(biāo)代入拋物線中,即可確定該二次函數(shù)的解析式;
(2)根據(jù)拋物線的解析式即可確定其對(duì)稱(chēng)軸方程,由此可得到點(diǎn)P的橫坐標(biāo);若∠APC=90°,則∠PAE和∠CPD是同角的余角,因此兩角相等,則它們的正切值也相等,由此可求出線段PE的長(zhǎng),即可得到點(diǎn)P點(diǎn)的坐標(biāo);(用相似三角形求解亦可)
(3)根據(jù)B、C的坐標(biāo)易求得直線BC的解析式,已知了點(diǎn)M的橫坐標(biāo)為t,根據(jù)直線BC和拋物線的解析式,即可用t表示出M、N的縱坐標(biāo),由此可求得MN的長(zhǎng),以MN為底,B點(diǎn)橫坐標(biāo)的絕對(duì)值為高,即可求出△BNC的面積(或者理解為△BNC的面積是△CMN和△MNB的面積和),由此可得到關(guān)于S(△BNC的面積)、t的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求得S的最大值及對(duì)應(yīng)的t的值.
試題解析:(1)∵拋物線y=x2+bx+c過(guò)點(diǎn)C(0,2),
∴c=2;
又∵tan∠OAC=
=2,
∴OA=1,即A(1,0);
又∵點(diǎn)A在拋物線y=x2+bx+2上,
∴0=12+b×1+2,b=-3;
∴拋物線對(duì)應(yīng)的二次函數(shù)的解析式為y=x2-3x+2;
(2)存在.
過(guò)點(diǎn)C作對(duì)稱(chēng)軸l的垂線,垂足為D,如圖所示,
![]()
∴x=-
;
∴AE=OE-OA=
,
∵∠APC=90°,
∴tan∠PAE=tan∠CPD,
∴
,即
,
解得PE=
或PE=
,
∴點(diǎn)P的坐標(biāo)為(
,
)或(
,
).
(3)如圖所示,易得直線BC的解析式為:y=-x+2,
![]()
∵點(diǎn)M是直線l′和線段BC的交點(diǎn),
∴M點(diǎn)的坐標(biāo)為(t,-t+2)(0<t<2),
∴MN=-t+2-(t2-3t+2)=-t2+2t,
∴S△BCN=S△MNC+S△MNB=
MN·t+
MN·(2-t),
=
MN·(t+2-t)=MN=-t2+2t(0<t<2),
∴S△BCN=-t2+2t=-(t-1)2+1,
∴當(dāng)t=1時(shí),S△BCN的最大值為1.
考點(diǎn):二次函數(shù)綜合題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東青島平度古峴鎮(zhèn)古峴中學(xué)九年級(jí)下學(xué)期階段性質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
學(xué)習(xí)了函數(shù)的知識(shí)后,數(shù)學(xué)活動(dòng)小組到文具店調(diào)研一種進(jìn)價(jià)為每支2元的活動(dòng)筆的銷(xiāo)售情況。調(diào)查后發(fā)現(xiàn),每支定價(jià)3元,每天能賣(mài)出100支,而且每支定價(jià)每下降0.1元,其銷(xiāo)售量將增加10支。但是物價(jià)局規(guī)定,該活動(dòng)筆每支的銷(xiāo)售利潤(rùn)不能超過(guò)其進(jìn)價(jià)的40%。設(shè)每支定價(jià)x元,每天的銷(xiāo)售利潤(rùn)為y元。
(1)求每天的銷(xiāo)售利潤(rùn)為y與每支定價(jià)x之間的函數(shù)關(guān)系式;
(2)如果要實(shí)現(xiàn)每天75元的銷(xiāo)售利潤(rùn),那么每支定價(jià)應(yīng)為多少元?
(3)當(dāng)每支定價(jià)為多少元時(shí),可以使這種筆每天的銷(xiāo)售利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省初中學(xué)業(yè)水平考試數(shù)學(xué)模擬試卷(解析版) 題型:選擇題
如圖,△ABC中,∠ACB=90°,沿CD折疊△CBD,使點(diǎn)B恰好落在AC邊上的點(diǎn)E處.若∠A=22°,則∠BDC等于
![]()
A.44° B.60° C.67° D.77°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省淄博市桓臺(tái)縣九年級(jí)中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題
圓錐的高是4cm,母線長(zhǎng)5cm,則其側(cè)面展開(kāi)圖的面積為( )
A.30πcm2 B.24πcm2 C.15πcm2 D.18πcm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省淄博市桓臺(tái)縣九年級(jí)中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題
一個(gè)長(zhǎng)方體的三視圖如圖所示,若其俯視圖為正方形,則這個(gè)長(zhǎng)方體的高和底面邊長(zhǎng)分別為( 。
A.3,2
B.2,2
C.3,2 D.2,3
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市長(zhǎng)清區(qū)九年級(jí)復(fù)習(xí)調(diào)查考試(一模)數(shù)學(xué)試卷(解析版) 題型:解答題
(1)如圖,點(diǎn)A、B、C、D在同一條直線上,BE∥DF,∠A=∠F,AB=FD.求證:AE=FC.
(2)如圖,在梯形ABCD中,AD∥BC,∠B =90°,AD=2,BC =5,tanC =
,求腰AB的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市長(zhǎng)清區(qū)九年級(jí)復(fù)習(xí)調(diào)查考試(一模)數(shù)學(xué)試卷(解析版) 題型:填空題
計(jì)算:
-20120=
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省濟(jì)南市九年級(jí)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題
已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對(duì)稱(chēng)軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫(xiě)出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動(dòng)點(diǎn),過(guò)點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對(duì)稱(chēng)軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長(zhǎng)取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年山東省九年級(jí)第一次學(xué)業(yè)水平模擬考試數(shù)學(xué)試卷(解析版) 題型:選擇題
如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F(xiàn)為AB的中點(diǎn),DE與AB交于點(diǎn)G,EF與AC交于點(diǎn)H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=
BD;其中正確結(jié)論的是( )
(A)①②③ (B)①②④ (C)①③④ (D)②③④
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com