欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,在平面直角坐標系中,圓D與y軸相切于點C(0,4),與x軸相交于A、B兩點,且AB=6.
(1)則D點的坐標是 (______,______),圓的半徑為______;
(2)sin∠ACB=______;經(jīng)過C、A、B三點的拋物線的解析式______;
(3)設拋物線的頂點為F,證明直線FA與圓D相切;
(4)在x軸下方的拋物線上,是否存在一點N,使△CBN面積最大,最大值是多少,并求出N點坐標.

(1)解:連接DC,則DC⊥y軸,

過點D作DE⊥AB于點E,則DE垂直平分AB,
∵AB=6,
∴AE=3,
在Rt△ADE中,AD===5,
故可得點D的坐標為(5,4),圓的半徑為5;

(2)解:在Rt△AOC中,AC===2,
在Rt△BOC中,BC===5,
∵S△ABC=AC×BCsin∠ACB=AB×CO,
∴sin∠ACB==;
設經(jīng)過點A、B、C三點的拋物線解析式為:y=ax2+bx+c,
將三點坐標代入可得:
解得:,
故經(jīng)過C、A、B三點的拋物線的解析式為:y=x2-x+4.

(3)證明:因為D為圓心,A在圓周上,DA=r=5,故只需證明∠DAF=90°,
拋物線頂點坐標:F(5,-),DF=4+=,AF==
∵DA2+AF2=52+(2==(2=DF2,
∴∠DAF=90°
所以AF切于圓D.

(4)解:存在點N,使△CBN面積最。
根據(jù)點B及點C的坐標可得:直線BC的解析式為:y=-x+4,
設N點坐標(a,),過點N作NP與y軸平行,交BC于點P,

可得P點坐標為(a,),
則NP=-()=
故S△BCN=S△BPN+S△PCN=×PN×OH+×PN×BH=PN×BO=×8×()=16-(a-4)2
當a=4時,S△BCN最大,最大值為16,此時,N(4,-2).
分析:(1)連接DC,則DC⊥y軸,過點D作DE⊥AB于點E,則根據(jù)垂徑定理可得AE=BE=3,連接DA,在Rt△ADE中可求出DA,即圓的半徑,也可得出點D的坐標;
(2)根據(jù)S△ABC=AC×BCsin∠ACB=AB×CO,可得出sin∠ACB,利用待定系數(shù)法可求出經(jīng)過C、A、B三點的拋物線的解析式.
(3)因為D為圓心,A在圓周上,DA=r=5,故只需證明∠DAF=90°,利用勾股定理的逆定理證明∠DAF=90°即可.
(4)設存在點N,過點N作NP與y軸平行,交BC于點P,求出直線BC的解析式,設點N坐標(a,),則可得點P的坐標為(a,-a+4),從而根據(jù)S△BCN=S△BPN+S△PCN,表示出△BCN的面積,利用配方法可確定最大值,繼而可得出點N的坐標.
點評:本題考查了二次函數(shù)及圓的綜合,涉及了垂徑定理、拋物線求二次函數(shù)解析式、切線的判定與性質(zhì),綜合考察的知識點較多,同學們注意培養(yǎng)自己解答綜合題的能力,關鍵還是基礎知識的掌握,要能將所學知識融會貫通,第四問解法不止一種,同學們可以積極探索其他解法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案