【題目】如圖,已知點A、B、C在同一直線上,M、N分別是AB,BC的中點.
(1)若AB=20,BC =8,求MN的長;
(2)若AB =a,BC =8,求MN的長;
(3)若AB =a,BC =b,求MN的長;
(4)從(1)(2)(3)的結(jié)果中能得到什么結(jié)論?
![]()
【答案】(1)6;(2)
;(3)
;(4)從(1)(2)(3)的結(jié)果中能得到線段MN始終等于線段AC的一半,與B點的位置無關.
【解析】
(1)因為點A、B、C在同一直線上,M、N分別是AC、BC的中點,由此即可得到
,
,而
,由此就可以求出MN的長度;
(2)根據(jù)(1)的結(jié)論可以知道
,然后把AB =a,BC =8代入即可求出MN的長度;
(3)方法和(2)一樣,直接把AB =a,BC =b代入
即可求出結(jié)果.
(4)根據(jù)(1)(2)(3)可以得出NM的長度始終等于線段AB的一半.
(1)
AB=20,BC =8,
點A、B、C在同一直線上,M、N分別是AB、BC的中點,
,
,![]()
(2)根據(jù)(1)得![]()
(3)根據(jù)(1)得![]()
(4) 從(1)(2)(3)的結(jié)果中能得到線段MN始終等于線段AC的一半,與B點的位置無關.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在折紙活動中,小明制作了一張△ABC紙片,點D、E分別是邊AB、AC上,將△ABC沿著DE折疊壓平,A與A′重合,若∠A=75°,則∠1+∠2=( ) ![]()
A.150°
B.210°
C.105°
D.75°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)一個兩位正整數(shù),a表示十位上的數(shù)字,b表示個位上的數(shù)字(a≠b,ab≠0),則這個兩位數(shù)用多項式表示為 (含a、b的式子);若把十位、個位上的數(shù)字互換位置得到一個新兩位數(shù),則這兩個兩位數(shù)的和一定能被 整除,這兩個兩位數(shù)的差一定能被 整除
(2)一個三位正整數(shù)F,各個數(shù)位上的數(shù)字互不相同且都不為0.若從它的百位、十位、個位上的數(shù)字中任意選擇兩個數(shù)字組成6個不同的兩位數(shù).若這6個兩位數(shù)的和等于這個三位數(shù)本身,則稱這樣的三位數(shù)F為“友好數(shù)”,例如:132是“友好數(shù)”
一個三位正整數(shù)P,各個數(shù)位上的數(shù)字互不相同且都不為0,若它的十位數(shù)字等于百位數(shù)字與個位數(shù)字的和,則稱這樣的三位數(shù)P為“和平數(shù)”
①直接判斷123是不是“友好數(shù)”?
②直接寫出共有 個“和平數(shù)”
③通過列方程的方法求出既是“和平數(shù)”又是“友好數(shù)”的數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知O是直線AB上的一點,∠COD是直角,OE平分∠BOC.
(1)如圖①,若∠AOC=30°,求∠DOE的度數(shù);
(2)在圖①中,若∠AOC=
,直接寫出∠DOE的度數(shù)(用含
的代數(shù)式表示);
(3)將圖①中的∠DOC繞頂點O順時針旋轉(zhuǎn)至圖②的位置,探究∠AOC和∠DOE的度數(shù)之間的關系,寫出你的結(jié)論,并說明理由;
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,過點D作DE⊥AB于點E,點F在邊CD上,CF=AE,連接AF,BF.
(1)求證:四邊形BFDE是矩形
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C為AB上面半圓上一點,點D為AB的下面半圓的中點,連接CD與AB交于點E,延長BA至F,使EF=CF. ![]()
(1)求證:CF與⊙O相切;
(2)若DEDC=13,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有下列四種結(jié)論:①AB=AD;②∠B=∠D;③∠BAC=∠DAC;④BC=DC.以其中的2個結(jié)論作為依據(jù)不能判定△ABC≌△ADC的是( )
![]()
A. ①② B. ①③ C. ①④ D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠DAC是△ABC的一個外角.
實驗與操作:根據(jù)要求進行尺規(guī)作圖,并在圖中標明相應字母(保留作圖痕跡,不寫作法)
(1)作∠DAC的平分線AM;
(2)作線段AC的垂直平分線,與AM交于點F,與BC邊交于點E,連接AE、CF
探究與猜想:若∠BAE=36°,求∠B的度數(shù).
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com