【題目】如圖,PA為⊙O的切線(xiàn),A為切點(diǎn).過(guò)A作OP的垂線(xiàn)AB,垂足為點(diǎn)C,交⊙O于點(diǎn)B.延長(zhǎng)BO與⊙O交于點(diǎn)D,與PA的延長(zhǎng)線(xiàn)交于點(diǎn)E.
![]()
(1)求證:PB為⊙O的切線(xiàn);(2)若tan∠ABE=
,求sinE的值.
【答案】![]()
(1)證明:連接OA
∵PA為⊙O的切線(xiàn),
∴∠PAO=90°
∵OA=OB,OP⊥AB于C
∴BC=CA,PB=PA
∴△PBO≌△PAO
∴∠PBO=∠PAO=90°
∴PB為⊙O的切線(xiàn)
(2)解法1:連接AD,∵BD是直徑,∠BAD=90°
由(1)知∠BCO=90°
∴AD∥OP
∴△ADE∽△POE
∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE="1/2 " ∴OC/BC=1/2,設(shè)OC=t,則BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t
∴EA/EP=AD/OP=2/5,可設(shè)EA=2m,EP=5m,則PA=3m
∵PA=PB∴PB=3m
∴sinE=PB/EP=3/5
(2)解法2:連接AD,則∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,設(shè)OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC=4t,
∴PA=PB=2
t 過(guò)A作AF⊥PB于F,則AF·PB=AB·PC
∴AF=
t 進(jìn)而由勾股定理得PF=
t
∴sinE=sin∠FAP=PF/PA=3/5
【解析】略
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A的坐標(biāo)為(-2,0),直線(xiàn)
與x軸、y軸分別交于點(diǎn)B和點(diǎn)C,連接AC,頂點(diǎn)為D的拋物線(xiàn)
過(guò)A、B、C三點(diǎn).
(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)設(shè)拋物線(xiàn)的對(duì)稱(chēng)軸DE交線(xiàn)段BC于點(diǎn)E,P是第一象限內(nèi)拋物線(xiàn)上一點(diǎn),過(guò)點(diǎn)P作x軸的垂線(xiàn),交線(xiàn)段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo).
(3)設(shè)點(diǎn)M是線(xiàn)段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)M作MN∥AB,交AC于點(diǎn)N,點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線(xiàn)段BA向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)t(秒)為何值時(shí),存在△QMN為等腰直角三角形?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,CE//BD,DE//AC.![]()
(1)求證:四邊形OCED是菱形;
(2)當(dāng)CD=6,DE=5,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b中,y隨x的增大而增大,b<0,則這個(gè)函數(shù)的圖象不經(jīng)過(guò)( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(
),點(diǎn)Q的坐標(biāo)為
,且
,
,若P,Q為某個(gè)矩形的兩個(gè)頂點(diǎn),且該矩形的一組對(duì)邊與某條坐標(biāo)軸平行,則稱(chēng)該矩形為點(diǎn)P,Q的“相關(guān)矩形”,圖2及圖3中點(diǎn)A的坐標(biāo)為(4,3).![]()
(1)若點(diǎn)B的坐標(biāo)為(-2,0),則點(diǎn)A,B的“相關(guān)矩形”的面積為;
(2)點(diǎn)C在y軸上,若點(diǎn)A,C的“相關(guān)矩形”的面積為8,求直線(xiàn)AC的解析式;
(3)如圖3,直線(xiàn)
與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,在直線(xiàn)MN上是否存在點(diǎn)D,使點(diǎn)A,D的“相關(guān)矩形”為正方形,如果存在,請(qǐng)求出點(diǎn)D的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,分別作BE⊥AC于E,DF⊥AC于F,已知OE=OF,CE=AF.
![]()
(1)求證:△BOE≌△DOF;
(2)若
,則四邊形ABCD是什么特殊四邊形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春天來(lái)了!有一群小朋友在草地上開(kāi)心的玩耍,所有的男生都戴黃帽子,女生都帶紅帽子,但有趣的事:在每個(gè)男生看來(lái),黃帽子和紅帽子一樣多, 在每個(gè)女生看來(lái), 黃帽子是紅帽子的2倍 ,則男生和女生共有_______人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題是真命題的是( )
A. 9的平方根是﹣3B. ﹣7是﹣49的平方根
C. ﹣5是-125的立方根D. 8的立方根是±2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市甲、乙兩個(gè)汽車(chē)銷(xiāo)售公司,去年一至十月份每月銷(xiāo)售同種品牌汽車(chē)的情況如圖所示: ![]()
(1)請(qǐng)你根據(jù)上圖填寫(xiě)下表:
銷(xiāo)售公司 | 平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) |
甲 | 5.2 | 9 | ||
乙 | 9 | 17.0 | 8 |
(2)請(qǐng)你從以下兩個(gè)不同的方面對(duì)甲、乙兩個(gè)汽車(chē)銷(xiāo)售公司去年一至十月份的銷(xiāo)售情況進(jìn)行分析: ①?gòu)钠骄鶖?shù)和方差結(jié)合看;
②從折線(xiàn)圖上甲、乙兩個(gè)汽車(chē)銷(xiāo)售公司銷(xiāo)售數(shù)量的趨勢(shì)看(分析哪個(gè)汽車(chē)銷(xiāo)售公司較有潛力).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com