【題目】如圖,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到△ADE,其中點(diǎn)B、C分別與點(diǎn)D、E對(duì)應(yīng),如果B、D、C三點(diǎn)恰好在同一直線上,那么下列結(jié)論錯(cuò)誤的是( )
![]()
A.∠ACB=∠AEDB.∠BAD=∠CAE
C.∠ADE=∠ACED.∠DAC=∠CDE
【答案】D
【解析】
利用旋轉(zhuǎn)的性質(zhì)直接對(duì)A選項(xiàng)進(jìn)行判斷;利用旋轉(zhuǎn)的性質(zhì)得
,再利用角的和差可得
,則可對(duì)B選項(xiàng)進(jìn)行判斷;利用旋轉(zhuǎn)的性質(zhì)得
,然后根據(jù)等腰三角形頂角相等時(shí)底角相等得到
,則
,則可對(duì)C選項(xiàng)進(jìn)行判斷;先判斷
,而
不能確定等于
,則可對(duì)D選項(xiàng)進(jìn)行判斷.
∵
繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到![]()
∴
,則A選項(xiàng)的結(jié)論正確
由旋轉(zhuǎn)的性質(zhì)可得![]()
即![]()
∴
,則B選項(xiàng)的結(jié)論正確
∵
繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到![]()
∴![]()
和
都是等腰三角形
∵![]()
∴![]()
∴
,則C選項(xiàng)的結(jié)論正確
∵
,即![]()
又![]()
∴![]()
∵AD不能確定平分![]()
∴
不能確定等于![]()
∴
不能確定等于
,則D選項(xiàng)的結(jié)論錯(cuò)誤
故選:D.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為4,P 為BC上的動(dòng)點(diǎn),連接PA,作PQ⊥PA,PQ交CD于Q,連接AQ ,則AQ的最小值是( )
![]()
A.5B.
C.
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+3與x軸和y軸的正半軸分別交于A、B兩點(diǎn),且OA=OB,拋物線的頂點(diǎn)為M,聯(lián)結(jié)AB、AM.
(1)求這條拋物線的表達(dá)式和點(diǎn)M的坐標(biāo);
(2)求sin∠BAM的值;
(3)如果Q是線段OB上一點(diǎn),滿足∠MAQ=45°,求點(diǎn)Q的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=BC=5,tan∠ABC=
.
(1)求邊AC的長(zhǎng);
(2)設(shè)邊BC的垂直平分線與邊AB的交點(diǎn)為D,求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,延長(zhǎng)AD至點(diǎn)E,使DE=AD,連接BD.
(1)求證:四邊形BCED是平行四邊形;
(2)若DA=DB=2,cosA=
,求點(diǎn)B到點(diǎn)E的距離.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知拋物線y=﹣
+bx+c(其中b、c是常數(shù))經(jīng)過點(diǎn)A(﹣2,﹣2)與點(diǎn)B(0,4),頂點(diǎn)為M.
(1)求該拋物線的表達(dá)式與點(diǎn)M的坐標(biāo);
(2)平移這條拋物線,得到的新拋物線與y軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的下方),且△BCM的面積為3.新拋物線的對(duì)稱軸l經(jīng)過點(diǎn)A,直線l與x軸交于點(diǎn)D.
①求點(diǎn)A隨拋物線平移后的對(duì)應(yīng)點(diǎn)坐標(biāo);
②點(diǎn)E、G在新拋物線上,且關(guān)于直線l對(duì)稱,如果正方形DEFG的頂點(diǎn)F在第二象限內(nèi),求點(diǎn)F的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, OE垂直于弦BC,垂足為F,OE交⊙O于點(diǎn)D,且∠CBE=2∠C.
(1)求證:BE與⊙O相切;
(2)若DF=9,tanC=
,求直徑AB的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線直線
與雙曲線
交于A、B兩點(diǎn),與x軸交于點(diǎn)C,點(diǎn)A的縱坐標(biāo)為6,點(diǎn)B的坐標(biāo)為(﹣3,﹣2).
(1)求直線和雙曲線的解析式;
(2)求點(diǎn)C的坐標(biāo),并結(jié)合圖象直接寫出
時(shí)x的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),
為
,點(diǎn)A的坐標(biāo)是
,
,把
繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)
后,得到
,則
的外接圓圓心坐標(biāo)是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com