如圖,拋物線
與x軸相交于點A、B,與y軸相交于點C,拋物線的對稱軸與x軸相交于點M.P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上).分別過點A、B作直線CP的垂線,垂足分別為D、E,連接點MD、ME.
![]()
(1)求點A,B的坐標(biāo)(直接寫出結(jié)果),并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo);若不能,說明理由;
(3)若將“P是拋物線在x軸上方的一個動點(點P、M、C不在同一條直線上)”改為“P是拋物線在x軸下方的一個動點”,其他條件不變,△MDE能否為等腰直角三角形?若能,求此時點P的坐標(biāo)(直接寫出結(jié)果);若不能,說明理由.
(1)A(1,0),B(5,0),證明見解析
(2)△MDE能成為等腰直角三角形,此時點P坐標(biāo)為(
,3)
(3)能。此時點P坐標(biāo)為(
,
)。
【解析】
試題分析:(1)在拋物線解析式中,令y=0,解一元二次方程,可求得點A、點B的坐標(biāo)。如答圖1所示,作輔助線,構(gòu)造全等三角形△AMF≌△BME,得到點M為為Rt△EDF斜邊EF的中點,從而得到MD=ME,問題得證。
在
中,令y=0,即﹣
,解得x=1或x=5,
∴A(1,0),B(5,0)。
如答圖1所示,分別延長AD與EM,交于點F,
![]()
∵AD⊥PC,BE⊥PC,∴AD∥BE!唷螹AF=∠MBE。
在△AMF與△BME中,
∵∠MAF=∠MBE,MA=MB,∠AMF=∠BME,
∴△AMF≌△BME(ASA)。
∴ME=MF,即點M為Rt△EDF斜邊EF的中點。
∴MD=ME,即△MDE是等腰三角形。
(2)首先分析,若△MDE為等腰直角三角形,直角頂點只能是點M。如答圖2所示,設(shè)直線PC與對稱軸交于點N,證明△ADM≌△NEM,得到MN=AM,從而求得點N坐標(biāo)為(3,2);利用點N、點C坐標(biāo),求出直線PC的解析式;最后聯(lián)立直線PC與拋物線的解析式,求出點P的坐標(biāo)。
能。
∵
,∴拋物線的對稱軸是直線x=3,M(3,0)
令x=0,得y=﹣4,∴C(0,﹣4)。
△MDE為等腰直角三角形,有3種可能的情形:
①若DE⊥EM,
由DE⊥BE,可知點E、M、B在一條直線上,而點B、M在x軸上,因此點E必然在x軸上。
由DE⊥BE,可知點E只能與點O重合,即直線PC與y軸重合,不符合題意。
故此種情況不存在。
②若DE⊥DM,與①同理可知,此種情況不存在。
③若EM⊥DM,如答圖2所示,
![]()
設(shè)直線PC與對稱軸交于點N,
∵EM⊥DM,MN⊥AM,∴∠EMN=∠DMA。
在△ADM與△NEM中,
∵∠DMA =∠EMN,DM = EM,∠ADM=∠NEM=135°,
∴△ADM≌△NEM(ASA)!郙N=MA。
∵M(jìn)(3,0),MN=MA=2,∴N(3,2)。
設(shè)直線PC解析式為y=kx+b,
∵點N(3,2),C(0,﹣4)在拋物線上,
∴
,解得
。
∴直線PC解析式為y=2x﹣4。
將y=2x﹣4代入拋物線解析式得:
,解得:x=0或x=
。
當(dāng)x=0時,交點為點C;當(dāng)x=
時,y=2x﹣4=3。
∴P(
,3)。
綜上所述,△MDE能成為等腰直角三角形,此時點P坐標(biāo)為(
,3)。
(3)當(dāng)點P是拋物線在x軸下方的一個動點時,解題思路與(2)完全相同:
如答題3所示,設(shè)對稱軸與直線PC交于點N,
![]()
與(2)同理,可知若△MDE為等腰直角三角形,直角頂點只能是點M。
∵M(jìn)D⊥ME,MA⊥MN,∴∠DMN=∠EMB。
在△DMN與△EMB中,
∵∠SMN =∠EMB,DM = EM,∠MDN=∠MEB=45°,
∴△DMN≌△EMB(ASA)!郙N=MB!郚(3,﹣2)。
設(shè)直線PC解析式為y=kx+b,
∵點N(3,﹣2),C(0,﹣4)在拋物線上,
∴
,解得
。
∴直線PC解析式為y=
x﹣4。
將y=
x﹣4代入拋物線解析式得:
,解得:x=0或x=
。
當(dāng)x=0時,交點為點C;當(dāng)x=
時,y=
x﹣4=
!郟(
,
)。
綜上所述,△MDE能成為等腰直角三角形,此時點P坐標(biāo)為(
,
)。
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 7 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 3 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com