如圖,已知△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)F在⊙O上,且滿足
=
,過點(diǎn)C作⊙O的切線交AB的延長線于D點(diǎn),交AF的延長線于E點(diǎn).
(1)求證:AE⊥DE;
(2)若tan∠CBA=
,AE=3,求AF的長.
![]()
(1)證明:連接OC,
∵OC=OA,
∴∠BAC=∠OCA,
∵
=
,
∴∠BAC=∠EAC,
∴∠EAC=∠OCA,
∴OC∥AE,
∵DE且⊙O于點(diǎn)C,
∴OC⊥DE,
∴AE⊥DE;
(2)解:∵AB是⊙O的直徑,
∴△ABC是直角三角形,
∵tan∠CBA=
,
∴∠CBA=60°,
∴∠BAC=∠EAC=30°,
∵△AEC為直角三角形,AE=3,
∴AC=2
,
連接OF,
∵OF=OA,∠OAF=∠BAC+∠EAC=60°,
∴△OAF為等邊三角形,
∴AF=OA=
AB,
在Rt△ACB中,AC=2
,tan∠CBA=
,
∴BC=2,
∴AB=4,
∴AF=2.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
因式分解a2b﹣b的正確結(jié)果是( )
|
| A. | b(a+1)(a﹣1) | B. | a(b+1)(b﹣1) | C. | b(a2﹣1) | D. | b(a﹣1)2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,方格紙中每個(gè)小正方形的邊長均為1,四邊形ABCD的四個(gè)頂點(diǎn)都在小正方形的頂點(diǎn)上,點(diǎn)E在BC邊上,且點(diǎn)E在小正方形的頂點(diǎn)上,連接AE.
(1)在圖中畫出△AEF,使△AEF與△AEB關(guān)于直線AE對(duì)稱,點(diǎn)F與點(diǎn)B是對(duì)稱點(diǎn);
(2)請(qǐng)直接寫出△AEF與四邊形ABCD重疊部分的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在邊長為正整數(shù)的△ABC中,AB=AC,且AB邊上的中線CD將△ABC的周長分為1:2的兩部分,則△ABC面積的最小值為( 。
A.
B. ![]()
C. ![]()
D. ![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
將邊長為1的正方形紙片按圖1所示方法進(jìn)行對(duì)折,記
第1次對(duì)折后得到的圖形面積為S1,第2次對(duì)折后得到的圖形面積為S2,…,第n次對(duì)折后得到的圖形面積為Sn,請(qǐng)根據(jù)圖2化簡,S1+S2+S3+…+S2014=![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知一組數(shù)據(jù):1,2,6,3,3,下列說法正確的是( 。
|
| A. | 眾數(shù)是3 | B. | 中位數(shù)是6 | C. | 平均數(shù)是4 | D. | 方差是5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線a∥b,直線l與a相交于點(diǎn)P,與直線b相交于點(diǎn)Q,PM⊥l于點(diǎn)P,若∠1=50°,則∠2= °.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com