【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),經(jīng)過(guò)C作CD⊥AB于點(diǎn)D,CF是⊙O的切線,過(guò)點(diǎn)A作AE⊥CF于E,連接AC.
(1)求證:AE=AD.
(2)若AE=3,CD=4,求AB的長(zhǎng).
![]()
【答案】(1)證明見解析(2)
【解析】
(1)連接OC,根據(jù)垂直定義和切線性質(zhì)定理證出△CAE≌△CAD(AAS),得AE=AD;(2)連接CB,由(1)得AD=AE=3,根據(jù)勾股定理得:AC=5,由cos∠EAC=
,cos∠CAB=
=
,∠EAC=∠CAB,得
=
.
(1)證明:連接OC,如圖所示,
∵CD⊥AB,AE⊥CF,
∴∠AEC=∠ADC=90°,
∵CF是圓O的切線,
∴CO⊥CF,即∠ECO=90°,
∴AE∥OC,
∴∠EAC=∠ACO,
∵OA=OC,
∴∠CAO=∠ACO,
∴∠EAC=∠CAO,
在△CAE和△CAD中,
,
∴△CAE≌△CAD(AAS),
∴AE=AD;
(2)解:連接CB,如圖所示,
∵△CAE≌△CAD,AE=3,
∴AD=AE=3,
∴在Rt△ACD中,AD=3,CD=4,
根據(jù)勾股定理得:AC=5,
在Rt△AEC中,cos∠EAC=
=
,
∵AB為直徑,
∴∠ACB=90°,
∴cos∠CAB=
=
,
∵∠EAC=∠CAB,
∴
=
,即AB=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問題背景
如圖①,BC是⊙O的直徑,點(diǎn)A在⊙O上,AB=AC,P為
上一動(dòng)點(diǎn)(不與B,C重合),
求證:
PA=PB+PC.
![]()
![]()
請(qǐng)你根據(jù)小明同學(xué)的思考過(guò)程完成證明過(guò)程.
(2)類比遷移
如圖②,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=AC,AB⊥AC,垂足為A,求OC的最小值.
![]()
(3)拓展延伸
如圖,⊙O的半徑為3,點(diǎn)A,B在⊙O上,C為⊙O內(nèi)一點(diǎn),AB=
AC,AB⊥AC,垂足為A,則OC的最小值為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線c1:
沿x軸翻折,得到拋物線c2,如圖1所示.
(1)請(qǐng)直接寫出拋物線c2的表達(dá)式;
(2)現(xiàn)將拋物線c1向左平移m個(gè)單位長(zhǎng)度,平移后得到新拋物線的頂點(diǎn)為M,與x軸的交點(diǎn)從左到右依次為A、B;將拋物線c2向右也平移m個(gè)單位長(zhǎng)度,平移后得到新拋物線的頂點(diǎn)為N,與
軸的交點(diǎn)從左到右依次為D、E.
①當(dāng)B、D是線段AE的三等分點(diǎn)時(shí),求m的值;
②在平移過(guò)程中,是否存在以點(diǎn)A、N、E、M為頂點(diǎn)的四邊形是矩形的情形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形
中,
,
,
是
的中點(diǎn),連結(jié)
并延長(zhǎng)交
的延長(zhǎng)線于點(diǎn)
.
圖中
可以由________繞點(diǎn)________旋轉(zhuǎn)________后得到;
若
,
,
,求
的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,剪兩張對(duì)邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中一張,重合部分構(gòu)成一個(gè)四邊形,則下列結(jié)論中不一定成立的是( 。
![]()
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究:
將三角形紙板如圖放置,點(diǎn)P是邊AB邊上一點(diǎn),DF∥CE,∠PCE=∠α,∠PDF=∠β,
探究:
(1)如果α=30°,β=40°,則∠DPC=___________.
猜想:
(2)當(dāng)點(diǎn)P在E、F兩點(diǎn)之間運(yùn)動(dòng)時(shí),∠DPC與α、β之間有何數(shù)量關(guān)系?并說(shuō)明理由;
拓展:
(3)如果點(diǎn)P在E、F兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、E、F四點(diǎn)不重合),上述(2)中的結(jié)論是否還成立?并說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小迪同學(xué)在學(xué)勾股定理時(shí)發(fā)現(xiàn)一類特殊三角形:在一個(gè)三角形中,如果一個(gè)角是另一個(gè)角的2倍,那么稱這個(gè)三角形為“倍角三角形”.
如圖1,在倍角
中,
,
、
、
的對(duì)邊分別記為
,
,
,三角形的三邊
,
,
有什么關(guān)系呢?讓我們一起來(lái)探索……
![]()
(1)已知“倍角三角形”的一個(gè)內(nèi)角為
,則這個(gè)三角形的另兩個(gè)角的度數(shù)分別為______
(2)小迪同學(xué)先從特殊的“倍角三角形”入手研究,請(qǐng)你結(jié)合圖2和圖3填寫下表:
三角形 | 角的已知量 |
|
|
圖2 |
| ______ | ______ |
圖3 |
| ______ |
![]()
![]()
小迪同學(xué)根據(jù)上表,提出一般性猜想:在“倍角三角形”中,
,那么
,
,
三邊滿足:______;
(3)如圖1:在倍角三角形中,
,
、
、
的對(duì)邊分別記為
,
,
,求證:
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=
(
),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。
![]()
(1)如圖1,直接寫出∠ABD的大小(用含
的式子表示);
(2)如圖2,∠BCE=150°,∠ABE=60°,判斷△ABE的形狀并加以證明;
(3)在(2)的條件下,連結(jié)DE,若∠DEC=45°,求
的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某校參加科普知識(shí)競(jìng)賽的學(xué)生試卷中,抽取一個(gè)樣本了解競(jìng)賽成績(jī)的分布情況,將樣本分成
、
、
、
、
五個(gè)組,繪制成如圖所示的頻數(shù)分布直方圖,圖中
、
、
、
、
各小組的長(zhǎng)方形的高的比是
,且
組的頻數(shù)是
,請(qǐng)結(jié)合直方圖提供的信息,解答下列問題.
![]()
通過(guò)計(jì)算說(shuō)明,樣本數(shù)據(jù)中,中位數(shù)落在哪個(gè)組?并求該小組的頻率;
估計(jì)該校在這次競(jìng)賽中,成績(jī)高于
分的學(xué)生人數(shù)占參賽人數(shù)的百分比.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com