觀察下列等式:
12×231=132×21,
13×341=143×31,
23×352=253×32,
34×473=374×43,
62×286=682×26,
……
以上每個等式中兩邊數(shù)字是分別對稱的,且每個等式中組成兩位數(shù)與三位數(shù)的數(shù)字之間具有相同規(guī)律,我們稱這類等式為“數(shù)字對稱等式”.
(1)根據(jù)上述各式反映的規(guī)律填空,使式子稱為“數(shù)字對稱等式”:
①52× = ×25;
② ×396=693× .
(2)設這類等式左邊兩位數(shù)的十位數(shù)字為
,個位數(shù)字為
,且2≤
≤9,寫出表示“數(shù)字對稱等式”一般規(guī)律的式子(含
、
),并證明.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 1 | ||
|
1×(
| ||||
(
|
| ||
| 2-1 |
| 2 |
| 1 | ||||
|
1×(
| ||||||||
(
|
| ||||
| 3-2 |
| 3 |
| 2 |
| 1 | ||||
|
| 4 |
| 3 |
| 1 | ||
|
| 1 | ||||
|
| 1 | ||||
|
| 1 | ||||
|
| 2002 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2009×2010 |
| 2009 |
| 2010 |
| 2009 |
| 2010 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
| n |
| n+1 |
| n |
| n+1 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com