分析 連接CE,交AD于M,根據(jù)折疊和等腰三角形性質(zhì)得出當(dāng)P和D重合時(shí),PE+BP的值最小,即可此時(shí)△BPE的周長(zhǎng)最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,先求出BC和BE長(zhǎng),代入求出即可.
解答
解:連接CE,交AD于M,
∵∠C=90°,AC=4,CB=3,
∴AB=5,
∵沿AD折疊C和E重合,
∴∠ACD=∠AED=90°,AC=AE=4,∠CAD=∠EAD,
∴BE=1,AD垂直平分CE,即C和E關(guān)于AD對(duì)稱,CD=DE,
∴當(dāng)P和D重合時(shí),PE+BP的值最小,即此時(shí)△BPE的周長(zhǎng)最小,最小值是BE+PE+PB=BE+CD+DB=BC+BE,
∴△PEB的周長(zhǎng)的最小值是BC+BE=3+1=4.
故答案為:4.
點(diǎn)評(píng) 本題考查了折疊性質(zhì),等腰三角形性質(zhì),軸對(duì)稱-最短路線問(wèn)題,勾股定理,含30度角的直角三角形性質(zhì)的應(yīng)用,關(guān)鍵是求出P點(diǎn)的位置,題目比較好,難度適中.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{7}{36}$ | B. | $\frac{36}{7}$ | C. | -$\frac{7}{36}$ | D. | -$\frac{36}{7}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x=-5 | B. | x=0 | C. | x=-1 | D. | x=1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com