【題目】如圖,已知矩形
,用直尺和圓規(guī)進(jìn)行如下操作:
①以點
為圓心,以
長為半徑畫弧,交
于點
;
②連接
;
③以點
為圓心,以
長為半徑畫弧,交
于點
;
④連接
.
根據(jù)以上操作,解答下列問題:
![]()
(1)線段
與線段
的位置關(guān)系是__________;
(2)若
,求
的度數(shù).
【答案】(1)DF⊥AE;(2)17°
【解析】
(1)易證△DEF≌△DEC,得到∠DCE=∠DFE=90°,從而得到DF⊥AE;
(2)由△DEF≌△DEC得到∠FDE=∠CDE,所以∠FDC=2∠CDE=90°-
,從而得到
的度數(shù).
解:(1)DF⊥AE,理由如下:
由題意:AD=AE
∴∠ADE=∠AED
又∵AD∥BC
∴∠ADE=∠DEC
∴∠AED=∠DEC
又∵EF=EC,ED=ED
∴△DEF≌△DEC(SAS)
∴∠DCE=∠DFE=90°
∴DF⊥AE;
![]()
(2)由題意:AD=AE
∴∠ADE=∠AED
又∵AD∥BC
∴∠ADE=∠DEC
∴∠AED=∠DEC
又∵EF=EC,ED=ED
∴△DEF≌△DEC(SAS)
∴∠FDE=∠CDE
又∵∠ADF=56°
∴∠FDC=90°-56°=34°
∴∠CDE=17°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知
的三邊長
,
,
,
,
,
都是整數(shù),且
,
的最大公約數(shù)為
.點
和點
分別為
的重心和內(nèi)心,且
.則
的周長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點坐標(biāo)為(
,
m),則不等式組mx﹣2<kx+1<mx的解集為( 。
A. x>
B.
<x<
C. x<
D. 0<x<![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點C作CE⊥AB交AB的延長線于點E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=
,BD=2,求OE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把菱形
向右平移至
的位置,作
,垂足為
,
與
相交于點
,
的延長線交
于點
,連接
,則下列結(jié)論:
①
;②
;③
:④
.
則其中所有成立的結(jié)論是( )
![]()
A.①②③④B.①②④C.②③④D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點C和點D為圓心,大于
為半徑作弧,兩弧交于點M,N;②作直線MN,且
恰好經(jīng)過點A,與CD交于點E,連接BE,則下列說法錯誤的是( )
![]()
A.
B.
C.若AB=4,則
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是2018年三月份某居民小區(qū)隨機抽取20戶居民的用水情況::
月用水量/噸 | 15 | 20 | 25 | 30 | 35 | 40 | 45 |
戶數(shù) | 2 | 4 | m | 4 | 3 | 0 | 1 |
(1)求出m= ,補充畫出這20戶家庭三月份用電量的條形統(tǒng)計圖;
(2)據(jù)上表中有關(guān)信息,計算或找出下表中的統(tǒng)計量,并將結(jié)果填入表中:
統(tǒng)計量名稱 | 眾數(shù) | 中位數(shù) | 平均數(shù) |
數(shù)據(jù) |
|
|
|
(3)為了倡導(dǎo)“節(jié)約用水綠色環(huán)保”的意識,江贛市自來水公司實行“梯級用水、分類計費”,價格表如下:
月用水梯級標(biāo)準(zhǔn) | Ⅰ級(30噸以內(nèi)) | Ⅱ級(超過30噸的部分) |
單價(元/噸) | 2.4 | 4 |
如果該小區(qū)有500戶家庭,根據(jù)以上數(shù)據(jù),請估算該小區(qū)三月份有多少戶家庭在Ⅰ級標(biāo)準(zhǔn)?
(4)按上表收費,如果某用戶本月交水費120元,請問該用戶本月用水多少噸?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線
與
軸交于
,
兩點,與
軸交于點
,點
與點
關(guān)于
軸對稱.
![]()
(1)求點
,
,
的坐標(biāo);
(2)求直線
的解析式;
(3)在直線
下方的拋物線上是否存在一點
,使
的面積最大?若存在,求出點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com