分析 (1)判定直角三角形△ECG和△EFG全等,和全等三角形對應(yīng)邊相等的性質(zhì);
(2)判定直角三角形△ECG和△EFG全等,和全等三角形對應(yīng)邊相等的性質(zhì);
(3)判定△ECG和△EFG全等,根據(jù)全等三角形對應(yīng)邊相等性質(zhì)即可證明.
解答 解:(1)FG=CG,理由如下:
∵E是BC的中點
∴BE=CE
∵將△ABE沿AE折疊后得到△AFE
∴BE=EF,
∴EF=EC;
同樣,在折疊中,∠B=∠EFA=90°
又∵∠C=∠B,∠EFG=∠EFA
∴∠C=∠EFG=90°
∵EG=EG,
∴△ECG≌△EFG
∴FG=CG;
(2)不會改變.
證明:連接EG![]()
∵E是BC的中點
∴BE=CE
∵將△ABE沿AE折疊后得到△AFE
∴BE=EF,
∴EF=EC;
同樣,在折疊中,∠B=∠EFA=90°
又∵∠C=∠B,∠EFG=∠EFA
∴∠C=∠EFG=90°
∵EG=EG,
∴△ECG≌△EFG
∴FG=CG;
(3)不會改變.
證明:連接EG、FC![]()
∵E是BC的中點
∴BE=CE
∵將△ABE沿AE折疊后得到△AFE
∴BE=EF,∠B=∠AFE
∴EF=EC
∴∠EFC=∠ECF
∵矩形ABCD改為平行四邊形
∴∠B=∠D
∵∠ECD=180°-∠D,∠EFG=180°-∠AFE=180°-∠B=180°-∠D
∴∠ECD=∠EFG
∴∠GFC=∠GFE-∠EFC=∠ECG-∠ECF=∠GCF
∴∠GFC=∠GCF
∴FG=CG
即(1)中的結(jié)論仍然成立.
點評 本題考查了學(xué)生對直角三角形全等的判定,考查了全等三角形對應(yīng)邊相等的性質(zhì).
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8 | B. | 16 | C. | 24 | D. | 48 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com