| 解:(1)FG= |
|
| (2)FG= 證明:延長AG交BC于N,延長AF交BC于M, ∵AF⊥BD,AG⊥CE, ∴∠AGC=∠CGN=90°,∠AFB=∠BFM=90°, 在RtΔAGC和RtΔCGN中, ∠AGC=∠CGN=90°,CG=CG,∠ACG=∠NCG, ∴RtΔAGC≌RtΔCGN, ∴AC=CN,AG=NG, 同理可證:AF=FM,AB=BM, ∴GF是ΔAMN的中位線, ∴GF= ∵AB+AC=MB+CN=BN+MN+CM+MN,BC=BN+MN+CM, ∴AB+AC-BC=MN, ∴GF= |
|
| (3)線段FG與ΔABC三邊之間數(shù)量關(guān)系是:GF= |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| AC |
| 5 |
| 6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com