【題目】如圖,△ABC中,P'是邊AB上一點,四邊形P'Q'M'N'是正方形,點Q',
在邊BC上,點N'在△ABC內(nèi).連接BN',并延長交AC于點N,NM⊥BC于點M,NP⊥MN交AB于點P,PQ⊥BC于點Q.
(1)求證:四邊形PQMN為正方形;
(2)若∠A=90°,AC=1.5m,△ABC的面積=1.5m2.求PN的長.
![]()
【答案】(1)證明見解析;(2)PN的長為
m.
【解析】
(1)先證得四邊形PQMN為矩形.根據(jù)正方形的性質(zhì)得到PN∥P'N',MN∥M'N',得到
,
,由此證得PN=MN,即可得到結(jié)論;
(2)作AD⊥BC于D,AD交PN于E,根據(jù)△ABC的面積=1.5m2求出AB=2,BC=2.5,AD=
,設(shè)PN=x,則PQ=DE=x,AE
x,由PN∥BC證得△APN∽△ABC,即可求出PN.
(1)∵NM⊥BC,NP⊥MN,PQ⊥BC,
∴四邊形PQMN為矩形.
∵四邊形P'Q'M'N'是正方形,
∴PN∥P'N',
∴
,
∵MN∥M'N',
∴
,
∴
,
而P'N'=M'N',
∴PN=MN,
∴四邊形PQMN為正方形;
(2)作AD⊥BC于D,AD交PN于E,如圖,
∵△ABC的面積=1.5,
∴
ABAC=1.5,
∴AB=2,
∴BC
2.5.
∵
BCAD=1.5,
∴AD
,
設(shè)PN=x,則PQ=DE=x,AE
x.
∵PN∥BC,
∴△APN∽△ABC,
∴
,即
,
解得:x
,
即PN的長為
m.
![]()
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,O是AB邊上的點,以O為圓心,OB為半輕的⊙O與AC相切于點D,BD平分∠ABC,∠ABC=60°.
(1)求∠C的度數(shù);
(2)若圓的半徑OB=2,求線段CD的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的頂點坐標分別為A(0,1),B(3,3) ,C(1,3) .
![]()
(1)畫出△ABC關(guān)于點O的中心對稱圖形△A1B1C1;
(2)畫出△ABC繞點A逆時針旋轉(zhuǎn)90
的△AB2C2;直接寫出點C2的坐標為 ;
(3)求在△ABC旋轉(zhuǎn)到△AB2C2的過程中,點C所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+(m﹣1)x+m的對稱軸為x=
,請你解答下列問題:
(1)m= ,拋物線與x軸的交點為 .
(2)x取什么值時,y的值隨x的增大而減?
(3)x取什么值時,y<0?
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知
是半圓的直徑,圓心為
為半圓上的兩個動點,且
,過點C作
的切線,交
的延長線于點
于點F.
(1)四邊形
的形狀是______________________.
(2)連接
,若
,則當
時四邊形
為平行四邊形;若四邊形
為菱形,四邊形
的面積是
,求直徑
的長.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為3的等邊△ABC中,點D在AC上,且CD=1,點E在AB上(不與點A、B重合),連接DE,把△ADE沿DE折疊,當點A的對應(yīng)點F落在等邊△ABC的邊上時,AE的長為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+2的圖象與x軸交于A(﹣3,0),B(1,0)兩點,與y軸交于點C.
(1)求這個二次函數(shù)的關(guān)系解析式;
(2)點P是直線AC上方的拋物線上一動點,是否存在點P,使△ACP的面積最大?若存在,求出點P的坐標;若不存在,說明理由;
(3)在平面直角坐標系中,是否存在點Q,使△BCQ是以BC為腰的等腰直角三角形?若存在,直接寫出點Q的坐標;若不存在,說明理由;
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,E為AC上一點,直線ED與AB延長線交于點F,若∠CDE=∠DAC,AC=12.
![]()
(1)求⊙O半徑;
(2)求證:DE為⊙O的切線;
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com