【題目】如圖,四邊形ABCD是一個菱形綠地,其周長為40
m,∠ABC=120°,在其內(nèi)部有一個四邊形花壇EFGH,其四個頂點(diǎn)恰好在菱形ABCD各邊的中點(diǎn),現(xiàn)在準(zhǔn)備在花壇中種植茉莉花,其單價為10元/m2,請問需投資金多少元?(結(jié)果保留整數(shù))
![]()
【答案】866元
【解析】分析:連接BD,AC,由菱形ABCD的周長求出邊長,再由∠ABC的度數(shù)確定出三角形ABD與三角形BCD都為等邊三角形,進(jìn)而求出BD與AC的長,由E、F、G、H分別為中點(diǎn)確定出四邊形EFGH為矩形,求出矩形邊長,進(jìn)而求出矩形面積,求出所求即可.
詳解:連接BD,AC.
∵菱形ABCD的周長為40
m,∴菱形ABCD的邊長為10
m.
∵∠ABC=120°,∴△ABD,△BCD是等邊三角形,∴對角線BD=10
m,AC=10
m.
∵E,F,G,H是菱形ABCD各邊的中點(diǎn),∴四邊形EFGH是矩形,矩形的邊長分別為5
m,5
m,∴矩形EFGH的面積為5
×5
=50
(m2),即需投資金為50
×10=500
≈866(元).
答:需投資金為866元.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形OABC,O為平面直角坐標(biāo)系的原點(diǎn),OA=5,OC=3,點(diǎn)B在第三象限.
(1)求點(diǎn)B的坐標(biāo);
(2)如圖1,若過點(diǎn)B的直線BP與長方形OABC的邊交于點(diǎn)P,且將長方形OABC的面積分為1:4兩部分,求點(diǎn)P的坐標(biāo);
(3)如圖2,M為x軸負(fù)半軸上一點(diǎn),且∠CBM=∠CMB,N是x軸正半軸上一動點(diǎn),∠MCN的平分線CD交BM的延長線于點(diǎn)D,在點(diǎn)N運(yùn)動的過程中,
的值是否變化?若不變,求出其值;若變化,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在△ABC中,AB=AC.過A點(diǎn)的直線a從與邊AC重合的位置開始繞點(diǎn)A按順時針方向旋轉(zhuǎn)角θ,直線a交BC邊于點(diǎn)P(點(diǎn)P不與點(diǎn)B、點(diǎn)C重合),△BMN的邊MN始終在直線a上(點(diǎn)M在點(diǎn)N的上方),且BM=BN,連接CN.![]()
(1)當(dāng)∠BAC=∠MBN=90°時,
①如圖a,當(dāng)θ=45°時,∠ANC的度數(shù)為△;
②如圖b,當(dāng)θ≠45°時,①中的結(jié)論是否發(fā)生變化?說明理由;
(2)如圖c,當(dāng)∠BAC=∠MBN≠90°時,請直接寫出∠ANC與∠BAC之間的數(shù)量關(guān)系,不必證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜邊AB邊中線CD,得到第一個三角形ACD;DE⊥BC于點(diǎn)E,作Rt△BDE斜邊DB上中線EF,得到第二個三角形DEF;依此作下去…則第n個三角形的面積等于 . ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水果店以每箱60元新進(jìn)一批蘋果共400箱,為計算總重量,從中任選30箱蘋果稱重,發(fā)現(xiàn)每箱蘋果重量都在10千克左右,現(xiàn)以10千克為標(biāo)準(zhǔn),超過10千克的數(shù)記為正數(shù),不足10千克的數(shù)記為負(fù)數(shù),將稱重記錄如下:
規(guī)格 | ﹣0.2 | ﹣0.1 | 0 | 0.1 | 0.2 | 0.5 |
筐數(shù) | 5 | 8 | 2 | 6 | 8 | 1 |
(1)求30箱蘋果的總重量
(2)若每千克蘋果的售價為10元,則賣完這批蘋果共獲利多少元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB,CD相交于點(diǎn)O,OE平分∠AOD,F(xiàn)O⊥AB,垂足為O,
∠BOD=∠DOE.
(1)求∠BOF的度數(shù);
(2)請寫出圖中與∠BOD相等的所有的角.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD位于平面直角坐標(biāo)系的第一象限,B、C在x軸上A點(diǎn)函數(shù)
上,且AB∥CD∥y軸,AD∥x軸,B(1,0)、C(3,0)。
![]()
⑴試判斷四邊形ABCD的形狀。
⑵如圖若點(diǎn)P是線段BD上一點(diǎn)PE⊥BC于E,M是PD的中點(diǎn),連EM、AM。
求證:AM=EM
![]()
⑶在圖中,連結(jié)AE交BD于N,則下列兩個結(jié)論:
![]()
①
值不變;②
的值不變。其中有且僅有一個是正確的,請選擇正確的結(jié)論證明并求其值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,解答下面的問題:
我們知道方程
有無數(shù)個解,但在實(shí)際生活中我們往往只需求出其
正整數(shù)解.
例:由
,得:
,(x、y為正整數(shù))
∴
,則有
.又
為正整數(shù),則
為正整數(shù).由2與3互質(zhì),可知:x為3的倍數(shù),從而x=3,代入
∴2x+3y=12的正整數(shù)解為![]()
問題:
(1)請你寫出方程
的一組正整數(shù)解: .
(2)若
為自然數(shù),則滿足條件的x值為 .
(3)七年級某班為了獎勵學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費(fèi)35元,問有幾種購買方案?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com