【題目】如圖,拋物線y=﹣
x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2),點(diǎn)E是線段BC上的一個動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)四邊形CDBF的面積最大時,E點(diǎn)的坐標(biāo)為_____.
![]()
【答案】(2,1)
【解析】
由于四邊形CDBF的面積等于△CDB的面積與△BCF的面積之和,當(dāng)四邊形CDBF的面積最大時,即△BCF最大,設(shè)點(diǎn)E的坐標(biāo)為(x,y),利用點(diǎn)E的坐標(biāo)表示出△BCF的面積即可求出點(diǎn)E的坐標(biāo).
過點(diǎn)E作EG⊥x軸于點(diǎn)G,交拋物線于F,
![]()
將A(﹣1,0),C(0,2)代入y=﹣
x2+mx+n
解得:
∴拋物線的解析式為:y=﹣
x2+
x+2
令y=0代入y=﹣
x2+
x+2,
∴0=﹣
x2+
x+2
解得:x=﹣1或x=4
∴B(4,0)
∴OB=4
設(shè)直線BC的解析式為y=kx+b,
把B(4,0)和C(0,2)代入y=kx+b
∴
解得:
∴直線BC的解析式為:y=﹣
x+2,
設(shè)E的坐標(biāo)為:(x,﹣
x+2)
∴F(x,﹣
x2+
x+2)
∴EF=﹣
x2+
x+2﹣(﹣
x+2)=﹣
x2+2x,
∴△BCF的面積為:
EFOB=2(﹣
x2+2x)=﹣x2+4x=﹣(x﹣2)2+4
四邊形CDBF的面積最大時,只需要△BCF的面積最大即可,
∴當(dāng)x=2時,
△BCF的面積可取得最大值,
此時E的坐標(biāo)為(2,1)
故答案是:(2,1).
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)校開展的數(shù)學(xué)活動課上,小明和小剛制作了一個正三樓錐(質(zhì)量均勻,四個面完全相同),并在各個面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請用列表或者面樹狀圍的方法表示上述游戲中的所有可能結(jié)果.
(2)請分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一透明圓柱形無蓋容器高12cm,底面周長24cm,在杯口點(diǎn)B處有一滴蜂蜜,此時一只螞蟻在杯外壁底部與蜂蜜相對的A處.
![]()
(1)若蜂蜜固定不動,求螞蟻吃到蜂蜜所爬行的最短路線長;
(2)若該螞蟻剛出發(fā)時發(fā)現(xiàn)B處的蜂蜜正以0.5cm/s的速度沿杯內(nèi)壁下滑,它便沿最短路徑在8秒鐘時吃到了蜂蜜,求此螞蟻爬行的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:
=___________,
=___________,
=___________,
=_________,
=__________,
=___________,
根據(jù)計(jì)算結(jié)果,回答:
(1)
一定等于
嗎?你發(fā)現(xiàn)其中的規(guī)律了嗎?請你用數(shù)學(xué)語言描述出來。
(2)利用你總結(jié)的規(guī)律,計(jì)算:
①若
,則
=_____________;
②
=______________________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CN是等邊△ABC的外角∠ACM內(nèi)部的一條射線,點(diǎn)A關(guān)于CN的對稱點(diǎn)為D,連接AD,BD,CD,其中AD,BD分別交射線CN于點(diǎn)E,P.
(Ⅰ)依題意補(bǔ)全圖形.
(Ⅱ)若∠ACN=α,求∠BDC的大小(用含α的式子表示).
(Ⅲ)若PA=x,PC=y,求PB的長度(用x,y的代數(shù)式表示).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于
BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4
,求∠C的大。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點(diǎn)E在AC上(且不與點(diǎn)A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點(diǎn)C逆時針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時,連接AE,求證:AF=
AE;
(3)如圖3,將△CED繞點(diǎn)C繼續(xù)逆時針旋轉(zhuǎn),當(dāng)平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2
,CE=2,求線段AE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于一次函數(shù)
(k,b為常數(shù)),下表中給出5組自變量及其對應(yīng)的函數(shù)值:
| …… | -1 | 0 | 1 | 2 | 3 | |
| …… | -2 | 1 | 4 | 8 | 10 | …… |
其中只有1個函數(shù)值計(jì)算有誤,則這個錯誤的函數(shù)值是( )
A.1B.4C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,
的頂點(diǎn)坐標(biāo)分別為A(2,3)、B (1,1)、C(2,1)
![]()
(1)畫出
關(guān)于
軸對稱的
,并寫出點(diǎn)
的坐標(biāo)為_________
(2)將
向左平移4個單位長度得到
,直接寫出點(diǎn)
的坐標(biāo)為_________
(3)直接寫出點(diǎn)B關(guān)于直線n(直線n上各點(diǎn)的縱坐標(biāo)都為-1)對稱點(diǎn)B'的坐標(biāo)為________
(4)在
軸上找一點(diǎn)P,使PA+PB的值最小,標(biāo)出P點(diǎn)的位置(保留畫圖痕跡)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com