【題目】如圖,ABCO的頂點(diǎn)B、C在第二象限,點(diǎn)A(﹣3,0),反比例函數(shù)y=
(k<0)圖象經(jīng)過(guò)點(diǎn)C和AB邊的中點(diǎn)D,若∠B=α,則k的值為( )
![]()
A. ﹣4tanαB. ﹣2sinαC. ﹣4cosαD. ﹣2tan
【答案】A
【解析】
過(guò)點(diǎn)C作CE⊥OA于E,過(guò)點(diǎn)D作DF⊥x軸于F,根據(jù)平行四邊形的對(duì)邊相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,設(shè)AF=a,表示出點(diǎn)C、D的坐標(biāo),然后根據(jù)CE、DF的關(guān)系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.
如圖,過(guò)點(diǎn)C作CE⊥OA于E,過(guò)點(diǎn)D作DF⊥x軸于F,
在OABC中,OC=AB,
∵D為邊AB的中點(diǎn),
∴OC=AB=2AD,CE=2DF,
∴OE=2AF,
設(shè)AF=a,∵點(diǎn)C、D都在反比例函數(shù)上,
∴點(diǎn)C(﹣2a,﹣
),
∵A(3,0),
∴D(﹣a﹣3,
),
∴-
=2×
,
解得a=1,
∴OE=2,CE=﹣
,
∵∠COA=∠α,
∴tan∠COA=tan∠α=
,
即tanα=﹣
,
k=﹣4tanα,
故選A.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線段BF上的點(diǎn)H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG=
S△FGH;④AG+DF=FG.
其中正確的是__.(把所有正確結(jié)論的序號(hào)都選上)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,AC是邊長(zhǎng)為6的菱形ABCD的對(duì)角線,∠ABC=∠PAQ=60°,∠PAQ繞點(diǎn)A旋轉(zhuǎn),射線AP、AQ分別交邊BC、CD于點(diǎn)E、F,連接EF.請(qǐng)?zhí)骄浚?/span>
(1)在旋轉(zhuǎn)過(guò)程中,線段AE、AF有怎樣的數(shù)量關(guān)系?并說(shuō)明理由;
(2)在旋轉(zhuǎn)過(guò)程中,△AEF的面積是否存在最小值?若存在,請(qǐng)求出最小值,若不存在,請(qǐng)說(shuō)明理由
(3)如圖2,將∠PAQ沿著AC向下平移至點(diǎn)A處,使CA′:AA′=2:1,在∠PA′Q繞點(diǎn)A′旋轉(zhuǎn)過(guò)程中,始終保持∠ABC=∠PA′Q,射線A′P、A′Q分別交直線BC、CD于點(diǎn)E、F,連接EF.當(dāng)S△A′EF:S菱形ABCD=19:18時(shí),直接寫(xiě)出線段CE的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六邊形ABCDEF的六個(gè)角都是120°,邊長(zhǎng)AB=1cm,BC=3cm,CD=3cm,DE=2cm,則這個(gè)六邊形的周長(zhǎng)是:__.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
中,
,把
繞著
點(diǎn)逆時(shí)針旋轉(zhuǎn),得到
,點(diǎn)
在
上.
![]()
(1)若
,求得
度數(shù);
(2)若
,
,求
中
邊上的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線
與x軸相交于A,B兩點(diǎn),點(diǎn)P是拋物線上一點(diǎn),且
,
.
求該拋物線的表達(dá)式;
設(shè)點(diǎn)
為拋物線上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)M在曲線BA之間
含端點(diǎn)
移動(dòng)時(shí),求
的最大值及取得最大值時(shí)點(diǎn)M的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(7分)如圖,在一滑梯側(cè)面示意圖中,BD∥AF,BC⊥AF于點(diǎn)C,DE⊥AF于
點(diǎn)E.BC=1.8m,BD=0.5m,∠A=45,∠F=29.
(1)求滑道DF的長(zhǎng)(精確到0.1m);
(2)求踏梯AB底端A與滑道DF底端F的距離AF(精確到0.1m).
(參考數(shù)據(jù):sin29≈0.48,cos29≈0.87,tan29≈0.55)![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,有一塊直角三角板,其中
,
,
,A、B在x軸上,點(diǎn)A的坐標(biāo)為
,圓M的半徑為
,圓心M的坐標(biāo)為
,圓M以每秒1個(gè)單位長(zhǎng)度的速度沿x軸向右做平移運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒;
求點(diǎn)C的坐標(biāo);
當(dāng)點(diǎn)M在
的內(nèi)部且
與直線BC相切時(shí),求t的值;
如圖2,點(diǎn)E、F分別是BC、AC的中點(diǎn),連接EM、FM,在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,使
?若存在,直接寫(xiě)出t的值,若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1)是某公園里的一種健身器材,其側(cè)面示意圖如圖(2)所示,其中AB=AC=120cm,BC=80cm,AD=30cm,∠DAC=90°.求點(diǎn)D到地面的高度是多少?
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com