【題目】根據(jù)下表中的信息解決問題:
![]()
若該組數(shù)據(jù)的中位數(shù)不大于38,則符合條件的正數(shù)
的取值共有( )
A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)
【答案】C
【解析】解:當(dāng)a=1時(shí),有19個(gè)數(shù)據(jù),最中間是:第10個(gè)數(shù)據(jù),則中位數(shù)是38;
當(dāng)a=2時(shí),有20個(gè)數(shù)據(jù),最中間是:第10和11個(gè)數(shù)據(jù),則中位數(shù)是38;
當(dāng)a=3時(shí),有21個(gè)數(shù)據(jù),最中間是:第11個(gè)數(shù)據(jù),則中位數(shù)是38;
當(dāng)a=4時(shí),有22個(gè)數(shù)據(jù),最中間是:第11和12個(gè)數(shù)據(jù),則中位數(shù)是38;
當(dāng)a=5時(shí),有23個(gè)數(shù)據(jù),最中間是:第12個(gè)數(shù)據(jù),則中位數(shù)是38;
當(dāng)a=6時(shí),有24個(gè)數(shù)據(jù),最中間是:第12和13個(gè)數(shù)據(jù),則中位數(shù)是38.5;
故該組數(shù)據(jù)的中位數(shù)不大于38,則符合條件的正整數(shù)a的取值共有:5個(gè).
故選C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)把(a﹣b)2看成一個(gè)整體,合并3(a﹣b)2﹣7(a﹣b)2+2(a﹣b)2的結(jié)果是 ;
(2)已知a+b=5(a﹣b),代數(shù)式
= ;
(3)已知:xy+x=﹣6,y﹣xy=2,求2[x+(xy﹣y)2]﹣3[(xy﹣y)2﹣y]﹣xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為
,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
![]()
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得
≌
即可得
,則可證得
為
的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得
利用勾股定理即可求得
的長,又由OE∥AB,證得
根據(jù)相似三角形的對應(yīng)邊成比例,即可求得
的長,然后利用三角函數(shù)的知識,求得
與
的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
![]()
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為![]()
![]()
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖AB是⊙O的直徑,AC是弦,直線EF是過點(diǎn)C的⊙O的切線,AD⊥EF于點(diǎn)D.
(1)求證:∠BAC=∠CAD;
(2)若∠B=30°,AB=12,求AC的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,正方形ABCD中,∠PCG=45°,且PD=BG,求證:FP=FC.
![]()
(2)如圖,正方形ABCD中,∠PCG=45°,延長PG交CB的延長線于點(diǎn)F,(1)中的結(jié)論還成立嗎?請說明理由.
![]()
(3)在(2)的條件下,作FE⊥PC,垂足為E,交CG于點(diǎn)N,連接DN,求∠NDC的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批發(fā)市場批發(fā)甲、乙兩種水果,根據(jù)以往經(jīng)驗(yàn)和市場行情,預(yù)計(jì)夏季某一段時(shí)間內(nèi),甲種水果的銷售利潤
(萬元)與進(jìn)貨量
(t)近似滿足函數(shù)關(guān)系
;乙種水果的銷售利潤
(萬元)與進(jìn)貨量
(t)近似滿足函數(shù)關(guān)系
(其中
,
、
為常數(shù)),且進(jìn)貨量
為1t時(shí),銷售利潤
為1. 4萬元;進(jìn)貨量
為2t時(shí),銷售利潤
為2. 6萬元.
(1)求
(萬元)與
(t)之間的函數(shù)關(guān)系式;
(2)如果市場準(zhǔn)備進(jìn)甲、乙兩種水果共10t,設(shè)乙種水果的進(jìn)貨量為
(t),請你寫出這兩種水果所獲得的銷售利潤之和
(萬元)與
(t)之間的函數(shù)關(guān)系式.并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一水果店主分兩批購進(jìn)某一種水果,第一批所用資金為2400元,因天氣原因,水果漲價(jià),第二批所用資金是2700元,但由于第二批單價(jià)比第一批單價(jià)每箱多10元,以致購買的數(shù)量比第一批少25%.
(1)該水果店主購進(jìn)第一批這種水果的單價(jià)是多少元?
(2)該水果店主計(jì)兩批水果的售價(jià)均定為每箱40元,實(shí)際銷售時(shí)按計(jì)劃無損耗售完第一批后,發(fā)現(xiàn)第二批水果品質(zhì)不如第一批,于是該店主將售價(jià)下降a%銷售,結(jié)果還是出現(xiàn)了20%的損耗,但這兩批水果銷售完后仍賺了不低于1716元,求a的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長度為5的動(dòng)線段
分別與坐標(biāo)系橫軸、縱軸的正半軸交于點(diǎn)
、點(diǎn)
,點(diǎn)
和點(diǎn)
關(guān)于
對稱,連接
,過點(diǎn)
作
軸的垂線段
,交
軸于點(diǎn)![]()
(1)移動(dòng)點(diǎn)
,發(fā)現(xiàn)在某一時(shí)刻,
和以點(diǎn)
為頂點(diǎn)的三角形相似,求這一時(shí)刻點(diǎn)
的坐標(biāo);
(2)移動(dòng)點(diǎn)
,當(dāng)
時(shí)求點(diǎn)
的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形
和
分別是邊長為
和
的正方形.
![]()
(1)用含
和
的代數(shù)式表示圖中三角形
的面積.
(2)用用
和
的代數(shù)式表示圖中陰影部分的面積.
(3)小軍計(jì)算出當(dāng)
,
時(shí)的陰影部分面積,與小明計(jì)算的當(dāng)
,
時(shí)的陰影部分面積相等,為什么呢?請說明理由,并求出此時(shí)的陰影部分面積.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com