欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知:正方形ABCD的邊長為2,△EFG為等腰直角三角形,∠EGF=90°.
(1)如圖1,當點G與點D重合,點E在正方形ABCD的對角線AC上時.求AE+AF的值;
(2)如圖2,當點G與點D重合,點E在線段CA的延長線上時.通過觀察、計算,你能發(fā)現(xiàn)AF與AE有怎樣的數(shù)量關系,并說明理由;
(3)如圖3,當點G在線段DA的延長線上時,設AG=x.則線段AE、AF與x有怎樣的數(shù)量關系,請說明理由.
分析:(1)當點G與點D重合,點E在正方形ABCD的對角線AC上時,AE+AF=2
2
,首先利用正方形的性質和等腰直角三角形的性質證明△FDA≌△EDC,由全等的性質得到AF=EC,
再利用勾股定理求出AC=2
2
,所以AE+AF=AE+EC=AC=2
2
;
(2)當點G與點D重合,點E在線段CA的延長線上時,AF-AE=2
2
,首先利用正方形的性質和等腰直角三角形的性質證明△FDA≌△EDC,由全等的性質得到AF=EC,∴AF-AE=EC-AE=AC=2
2

(3)當點G在線段DA的延長線上時,設AG=x,AE-AF=
2
x
,過點G作GH⊥AG,交AE于點H,利用已知條件首先證明△FGA≌△EGH,所以AE-AF=AE-EH=AH,在Rt△GAH中,根據(jù)勾股定理得到AH=
AG2+AH2
=
2
x
,所以AE-AF=
2
x
解答:解:(1)∵四邊形ABCD為正方形,
∴AD=CD,∠ADC=90°,
∵△GEF為等腰直角三角形,
∴GF=GE,∠EGF=90°,
∴∠FDA=∠CDE,
∴△FDA≌△EDC(SAS) 
∴AF=EC,
∵根據(jù)勾股定理:AC=2
2

∴AE+AF=AE+EC=AC=2
2
;
(2)AF-AE=2
2
,
∵四邊形ABCD為正方形
∴AD=CD,∠ADC=90°,
∵△GEF為等腰直角三角形,
∴GF=GE,∠EGF=90°,
∴∠FDA=∠CDE,
∴△FDA≌△EDC(SAS),
∴AF=EC
∴AF-AE=EC-AE=AC=2
2

(3)AE-AF=
2
x
,
過點G作GH⊥AG,交AE于點H,
∴∠HGA=90°,
∵AC為正方形對角線,
∴∠GAE=45°
∴△GAH為等腰直角三角形,
∴HG=AG,
又∵GF=GE,∠EGF=90°,
∴∠EGH=∠FGA,
∴△FGA≌△EGH(SAS),
∴EH=AF,
∴AE-AF=AE-EH=AH,
在Rt△GAH中,根據(jù)勾股定理:
∴AH=
AG2+AH2
=
2
x

∴AE-AF=
2
x
點評:本題考查了正方形的性質、等腰三角形的性質和判定、全等三角形的性質和判定以及勾股定理的運用,題目的綜合性很強,難度不小,特別是第三小題正確的作出輔助線是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:正方形ABCD邊長為1,E、F、G、H分別為各邊上的點,且AE=BF=CG=DH,設小正方形EFGH的面積為s,AE為x,則s關于x的函數(shù)圖象大致是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、(1)如圖,已知在正方形ABCD中,M是AB的中點,E是AB延長線上一點,MN⊥DM且交∠CBE的平分線于N.試判定線段MD與MN的大小關系;
(2)若將上述條件中的“M是AB的中點”改為“M是AB上或AB延長線上任意一點”,其余條件不變.試問(1)中的結論還成立嗎?如果成立,請證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:正方形ABCD邊長為4cm,E,F(xiàn)分別為CD,BC的中點,動點P在線段AB上從B?A以2cm/精英家教網(wǎng)s的速度運動,同時動點Q在線段FC上從F?C以1cm/s的速度運動,動點G在PC上,且∠EGC=∠EQC,連接PD.設運動時間為t秒.
(1)求證:△CQE∽△APD;
(2)問:在運動過程中CG•CP的值是否發(fā)生改變?如果不變,請求這個值;若改變,請說明理由;
(3)當t為何值時,△CGE為等腰三角形并求出此時△CGE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,已知在正方形ABCD中,P是BC上的一點,且AP=DP.求證:P是BC中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=
6
.下列結論:
①△APD≌△AEB﹔②點B到直線AE的距離為
3
﹔③EB⊥ED﹔④S△APD+S△APB=0.5+
2

其中正確結論的序號是( 。

查看答案和解析>>

同步練習冊答案