【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=
(m為常數(shù)且m≠0)的圖象在第二象限交于點C,CD⊥x軸,垂足為D,若OB=2OA=3OD=6.
![]()
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求兩個函數(shù)圖象的另一個交點E的坐標(biāo);
(3)請觀察圖象,直接寫出不等式kx+b≥
的解集.
【答案】(1)y=﹣2x+6,﹣
;(2)(5,﹣4);(3)x≤﹣2或0<x≤5
【解析】
(1)先求出A、B、C坐標(biāo),再利用待定系數(shù)法確定函數(shù)解析式.
(2)兩個函數(shù)的解析式作為方程組,解方程組即可解決問題.
(3)根據(jù)圖象一次函數(shù)的圖象在反比例函數(shù)圖象的上方,即可解決問題.
解:(1)∵OB=2OA=3OD=6,
∴OB=6,OA=3,OD=2,
∵CD⊥OA,
∴DC∥OB,
∴
∴![]()
∴CD=10,
∴點C坐標(biāo)(﹣2,10),
∵B(0,6),A(3,0),
∴
解得
,
∴一次函數(shù)為y=﹣2x+6.
∵反比例函數(shù)y=
經(jīng)過點C(﹣2,10),
∴m=﹣20,
∴反比例函數(shù)解析式為y=﹣
.
(2)由
解得
或
,
∴E的坐標(biāo)為(5,﹣4).
(3)由圖象可知kx+b≥
的解集:x≤﹣2或0<x≤5.
![]()
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC,BD交于點O,過點A作AE⊥BC于點E,延長BC至F,使CF=BE,連接DF.
(1)求證:四邊形AEFD是矩形;
(2)若AC=10,∠ABC=60°,則矩形AEFD的面積是 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
.
(1)寫出該二次函數(shù)圖象的對稱軸及頂點坐標(biāo),再描點畫圖;
(2)利用圖象回答:當(dāng)x取什么值時,
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2)當(dāng)∠ODB=30°,BC=
時,求⊙O的半徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于點D,DE恰好是AB的垂直平分線,垂足為E.若BC=6,則AB的長為( 。
![]()
A.3
B.4
C.8D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,已知
,
,點P是邊BC上一動點(點P不與點B,C重合),連接AP,作點B關(guān)于直線AP的對稱點M,連接MP,作
的角平分線交邊CD于點N.則線段MN的最小值為_______________
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,一次函數(shù)
的圖像與反比例函數(shù)
的圖像相交于A,B兩點,與x軸相交于點C,連接OB,且
的面積為
.
![]()
(1)求反比例函數(shù)的表達(dá)式;
(2)將直線AB向下平移,若平移后的直線與反比例函數(shù)的圖像只有一個交點,試說明直線AB向下平移了幾個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在邊長為
的正方形ABCD中,對角線AC與BD相交于點O,P是BD上一動點,過P作EF∥AC,分別交正方形的兩條邊于點E,F.設(shè)BP=x,△OEF的面積為y,則能反映y與x之間關(guān)系的圖象為( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
交
軸于
,
兩點(點
在點
的左邊)交
軸正半軸于點
,點
為拋物線頂點.
(1)直接寫出
三點的坐標(biāo)及
的值;
(2)點
為拋物線在
軸上方的一點,且
,求點
的坐標(biāo);
(3)在(2)的條件下,
為
的外心,點
,點
分別從點
同時出發(fā)以2單位/
,1單位/
速度沿射線
,
作勻速運動,運動時間為
秒(
且
),直線
交于
.
①求證:點
在定直線
上并求
的解析式;
②若
在拋物線上且在直線
下方,當(dāng)
到直線
距離最大時,求點
的坐標(biāo).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com