【題目】如圖,已知射線AB與直線CD交于點(diǎn)O,OF平分∠BOC,OG⊥OF于點(diǎn)O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.
![]()
【答案】(1)∠AOD=60°;(2)見解析.
【解析】
(1)根據(jù)兩直線平行,同位角相等可得∠FOB=∠A=30
,再根據(jù)角平分線的定義求出∠COF=∠FOB=30
,然后根據(jù)平角等于180
列式進(jìn)行計(jì)算即可得解;
(2)先求出∠DOG=60
,再根據(jù)對頂角相等求出∠AOD=60
,然后根據(jù)角平分線的定義即可得解.
解:(1)∵AE∥OF,∴∠BOF=∠A=30°,
∵OF平分∠BOC,∴∠COF=∠BOF=30°,∠DOF=180°-∠COF=150°;
(2)由(1)知∠COF=∠BOF=30°,∴∠BOC=60°,∠AOD=∠BOC=60°,
∵OG⊥OF,∴∠BOG=90°-∠BOF=60°,
∴∠DOG=180°-∠BOC-∠BOG=180°-60°-60°=60°,
∴∠AOD=∠DOG=60°,∴OD平分∠AOG.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形我們稱它為箏形.如圖,在四邊形ABCD中,AB=AD,BC=DC,AC與BD相交于點(diǎn)O,下列判斷正確的有_____(填序號).
①AC⊥BD;②AC,BD互相平分;③AC平分∠BCD;④∠ABC=∠ADC=90°;⑤箏形ABCD的面積為
AC·BD.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),A點(diǎn)的坐標(biāo)為
,C點(diǎn)的坐標(biāo)為
,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個單位長度的速度沿著
的路線移動
即:沿著長方形移動一周
.
寫出點(diǎn)B的坐標(biāo)
______![]()
當(dāng)點(diǎn)P移動了4秒時(shí),描出此時(shí)P點(diǎn)的位置,并求出點(diǎn)P的坐標(biāo).
在移動過程中,當(dāng)點(diǎn)P到x軸距離為5個單位長度時(shí),求點(diǎn)P移動的時(shí)間.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
![]()
請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m= ,n= ;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計(jì)劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購買其他類讀物多少冊比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知實(shí)數(shù)a,b,c滿足a+b=ab=c,有下列結(jié)論:①若c≠0,則
;②若a=3,則b+c=9;③若c≠0,則(1-a)(1-b)=
;④若c=5,則a2+b2=15. 其中正確的是( )
A. ①③④ B. ①②④ C. ①②③ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是直線AB上一點(diǎn),∠COD=90°,OE、OF分別是∠COB、∠AOD的平分線,且∠COB:∠AOD=4:9.
(1)寫出圖中∠BOD的余角和補(bǔ)角;
(2)求∠AOC的度數(shù)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(背景知識)
數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:
例如,若數(shù)軸上
點(diǎn)、
點(diǎn)表示的數(shù)分別為
、
,則
、
兩點(diǎn)之間的距離
,線段
的中點(diǎn)
表示的數(shù)為
.
(問題情境)
在數(shù)軸上,點(diǎn)
表示的數(shù)為-20,點(diǎn)
表示的數(shù)為10,動點(diǎn)
從點(diǎn)
出發(fā)沿?cái)?shù)軸正方向運(yùn)動,同時(shí),動點(diǎn)
也從點(diǎn)
出發(fā)沿?cái)?shù)軸負(fù)方向運(yùn)動,已知運(yùn)動到4秒鐘時(shí),
、
兩點(diǎn)相遇,且動點(diǎn)
、
運(yùn)動的速度之比是
(速度單位:單位長度/秒).
![]()
![]()
備用圖
(綜合運(yùn)用)
(1)點(diǎn)
的運(yùn)動速度為______單位長度/秒,點(diǎn)
的運(yùn)動速度為______單位長度/秒;
(2)當(dāng)
時(shí),求運(yùn)動時(shí)間;
(3)若點(diǎn)
、
在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動,但運(yùn)動的方向不限,我們發(fā)現(xiàn):隨著動點(diǎn)
、
的運(yùn)動,線段
的中點(diǎn)
也隨著運(yùn)動.問點(diǎn)
能否與原點(diǎn)重合?若能,求出從
、
相遇起經(jīng)過的運(yùn)動時(shí)間,并直接寫出點(diǎn)
的運(yùn)動方向和運(yùn)動速度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.能否由上面的已知條件證明AB∥ED?如果能,請給出證明;如果不能,請從下列三個條件中選擇一個合適的條件,添加到已知條件中,使AB∥ED成立,并給出證明.
![]()
供選擇的三個條件(請從其中選擇一個):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com