| A. | 鄰邊不等的平行四邊形 | B. | 矩形 | ||
| C. | 正方形 | D. | 菱形 |
分析 作出圖形,根據(jù)三角形的中位線定理可得EF=GH=$\frac{1}{2}$AC,F(xiàn)G=EH=$\frac{1}{2}$BD,再根據(jù)矩形的對(duì)角線相等可得AC=BD,從而得到四邊形EFGH的四條邊都相等,然后根據(jù)四條邊都相等的四邊形是菱形解答.
解答
解:如圖,連接AC、BD,
∵E、F、G、H分別是矩形ABCD的AB、BC、CD、AD邊上的中點(diǎn),
∴EF=GH=$\frac{1}{2}$AC,F(xiàn)G=EH=$\frac{1}{2}$BD(三角形的中位線等于第三邊的一半),
∵矩形ABCD的對(duì)角線AC=BD,
∴EF=GH=FG=EH,
∴四邊形EFGH是菱形.
故選:D.
點(diǎn)評(píng) 本題考查了三角形的中位線定理,菱形的判定,矩形的性質(zhì),作輔助線構(gòu)造出三角形,然后利用三角形的中位線定理是解題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{4π}{3}$-$\sqrt{3}$ | B. | $\frac{4π}{3}$-2$\sqrt{3}$ | C. | π-$\sqrt{3}$ | D. | $\frac{2π}{3}$-$\sqrt{3}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x+x2=x3 | B. | x2•x3=x6 | C. | (x3)2=x6 | D. | x9÷x3=x3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x≥-2 | B. | x>-2 | C. | x≥2 | D. | x≤2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | (1,3) | B. | (5,-6) | C. | (-3,-5) | D. | (0,-2) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com