如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE、始終經(jīng)過點A,EF與AC交于M點.![]()
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運動過程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長;若不能,請說明理由.
(1)由AB=AC,根據(jù)等邊對等角,可得∠B=∠C,再結(jié)合△ABC≌△DEF與三角形外角的性質(zhì),可得∠CEM=∠BAE,即可證得結(jié)論;(2)能,BE=1或![]()
解析試題分析:(1)由AB=AC,根據(jù)等邊對等角,可得∠B=∠C,再結(jié)合△ABC≌△DEF與三角形外角的性質(zhì),可得∠CEM=∠BAE,即可證得結(jié)論;
(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分別從AE=EM與AM=EM去分析,注意利用全等三角形與相似三角形的性質(zhì)求解即可得到答案.
(1)∵AB=AC,
∴∠B=∠C,
∵△ABC≌△DEF,
∴∠AEF=∠B,
又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,
∴∠CEM=∠BAE,
∴△ABE∽△ECM;
(2)∵∠AEF=∠B=∠C,且∠AME>∠C,
∴∠AME>∠AEF,
∴AE≠AM;
當(dāng)AE=EM時,則△ABE≌△ECM,
∴CE=AB=5,
∴BE=BC﹣EC=6﹣5=1,
當(dāng)AM=EM時,則∠MAE=∠MEA,
∴∠MAE+∠BAE=∠MEA+∠CEM,
即∠CAB=∠CEA,
又∵∠C=∠C,
∴△CAE∽△CBA,
∴
,
∴CE=
,
∴BE=6﹣
=
.
考點:相似三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)以及二次函數(shù)的最值
點評:此題難度較大,注意數(shù)形結(jié)合思想、分類討論思想與函數(shù)思想的應(yīng)用是解答本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com