【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(n,b),B(m,a)且m+n=1.
(1)當(dāng)b=a時,直接寫出函數(shù)圖象的對稱軸;
(2)求b和c(用只含字母a、n的代數(shù)式表示):
(3)當(dāng)a<0時,函數(shù)有最大值-1,b+c≥a,n≤
,求a的取值范圍.
【答案】(1)
;(2)
,
;(3)
≤a≤
.
【解析】
(1)用拋物線對稱軸公式求解;
(2)將A(n,b),B(m,a)代入解析式,用待定系數(shù)法求解;
(3)由b+c的值列不等式求得n的取值范圍,然后將二次函數(shù)配方為頂點式后根據(jù)題意可得
,然后將b和c代入化簡求得
,然后根據(jù)n的取值范圍求得a的取值范圍.
解:(1)由題意可得
拋物線的對稱軸為:直線![]()
(2)因為二次函數(shù)
經(jīng)過A(n,b),B(m,a),
所以![]()
方程組①-②,得
,
,
∵m-n=1, a
,
∴
,
得
,
把
代入方程組中②,得
,
(3)由(2)可知:![]()
又![]()
≥a
![]()
≥a,
當(dāng)a<0時,n≥
,
由n≤
得,
≤n≤
,
∵
,a<0
![]()
![]()
![]()
,且
,得
,
化簡得,
,
∴
,
配方得
,
∵
在
≤n≤
時隨n的增大而增大
當(dāng)n=
時,
,當(dāng)n=
時,![]()
![]()
![]()
≤a≤
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于圓,點D在劣弧
上,AD=
BC,DC=
AB,Q為AC中點,點D與點P關(guān)于點Q對稱.
(1)求證:△PAD∽△ABC.
(2)求證:點B,P,D在一條直線上.
(3)如圖2,記∠PAB=α,∠PCB=β,∠ABC=θ,請用含α,β的代數(shù)式表示θ.
(4)如圖3,設(shè)E,F分別為AB,BC的中點,EF交BD于點H,求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB、AC是⊙O的兩條弦,且AO平分∠BAC.點M、N分別在弦AB、AC上,滿足AM=CN.
(1)求證:AB=AC;
(2)聯(lián)結(jié)OM、ON、MN,求證:
.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市經(jīng)濟(jì)技術(shù)開發(fā)區(qū)某智能手機(jī)有限公司接到生產(chǎn)300萬部智能手機(jī)的訂單,為了盡快交貨,增開了一條生產(chǎn)線,實際每月生產(chǎn)能力比原計劃提高了50%,結(jié)果比原計劃提前5個月完成交貨,求每月實際生產(chǎn)智能手機(jī)多少萬部.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一對直角三角板如圖放置,點C在FD的延長線上,點B在ED上,∠F=∠ACB=90°,AB∥CF,∠E=45°,∠A=60°,AC=8,則CD的長度是_________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,延長BA至點E,使得AE=AB,聯(lián)結(jié)DE、AC.點F在線段DE上,聯(lián)結(jié)BF,分別交AC、AD于點G、H.
(1)求證:BG=GF;
(2)如果AC=2AB,點F是DE的中點,求證:AH2=GHBH.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在疫情防控期間,某中學(xué)為保障廣大師生生命健康安全購進(jìn)一批免洗手消毒液和84消毒液.如果購買100瓶免洗手消毒液和150瓶84消毒液,共需花費1500元;如果購買120瓶免洗手消毒液和160瓶84消毒液,共需花費1720元.
(1)每瓶免洗手消毒液和每瓶84消毒液的價格分別是多少元?
(2)某藥店出售免洗手消毒液,滿150瓶免費贈送10瓶84消毒液.若學(xué)校從該藥店購進(jìn)免洗手消毒液和84消毒液共230瓶,恰好用去1700元,則學(xué)校購買免洗手消毒液多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),經(jīng)過幾秒,使△PBQ的面積等于8cm2?
(2)點P從點A開始沿AB邊向B以1cm/s的速度移動,點Q從B點開始沿BC邊向點C以2cm/s的速度移動.如果P,Q分別從A,B同時出發(fā),線段PQ能否將△ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.
(3)若P點沿射線AB方向從A點出發(fā)以1cm/s的速度移動,點Q沿射線CB方向從C點出發(fā)以2cm/s的速度移動,P,Q同時出發(fā),問幾秒后,△PBQ的面積為1?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為8,一個以點A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別與邊BC、DC的延長線交于點E、F,連接EF.設(shè)CE=a,CF=b.
(1)如圖①,當(dāng)a=8時,b的值為 ;
(2)如圖②,當(dāng)∠EAF被對角線AC平分時,求a、b的值;
(3)請寫出∠EAF繞點A旋轉(zhuǎn)的過程中a,b滿足的關(guān)系式,并說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com